Carbon-based perovskite solar cells have attracted much attention,due to their low cost,simple preparation process and high chemical stability.However,the devices exhibit low photoelectric conversion efficiency,owing ...Carbon-based perovskite solar cells have attracted much attention,due to their low cost,simple preparation process and high chemical stability.However,the devices exhibit low photoelectric conversion efficiency,owing to the presence of defects and interface impedance between the perovskite active layer and the contact interface.In order to minimize the interfacial defects and improve the charge transfer performance between the perovskite layer and the contact interface,cetyltrimethylammonium chloride(CTAC)was introduced into the lower interface of HTL-free carbon-based perovskite solar cells,because CTAC can be used as interface modification material to passivate the buried interface of perovskite and promote grain growth.It was found that CTAC can not only passivate the interface defects of perovskite,but also improve the crystalline quality of perovskite.As a result,the photovoltaic conversion efficiency of reaches 17.18%,which is 12.5%higher than that of the control group.After 20 days in air with 60%RH humidity,the cell can still maintain more than 90%of the initial efficiency,which provides a new strategy for interfacial passivation of perovskite solar cells.展开更多
Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the...Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the impact of nitric acid oxidation on the surface of carbonized melamine foam and its microwave absorption properties.The treated foam exhibits optimal reflection loss of−21.51 dB at 13.20 GHz,with an effective absorption bandwidth of 7.04 GHz.The enhanced absorption properties are primarily attributed to the strengthened dielectric loss,improved impedance matching,and increased polarization losses resulting from the oxidized surfaces.This research demonstrates a promising new approach for research into surface treatments to improve the performances of microwave absorbers.展开更多
基金National Natural Science Foundation of China (52162028)Natural Science Foundation of Jiangxi Province (20232ACB204011,20224BAB204001)+3 种基金Education Department of Jiangxi Province (GJJ2201001)Jingdezhen Municipal Science and Technology Bureau (2023GY001-16,2023ZDGG001 and 20224SF005-08)Opening Project of National Engineering Research Center for Domestic&Building Ceramics (GCZX2301)State Key Laboratory of New Ceramics and Fine Processing in Tsinghua University (KF202309,KF202414)。
文摘Carbon-based perovskite solar cells have attracted much attention,due to their low cost,simple preparation process and high chemical stability.However,the devices exhibit low photoelectric conversion efficiency,owing to the presence of defects and interface impedance between the perovskite active layer and the contact interface.In order to minimize the interfacial defects and improve the charge transfer performance between the perovskite layer and the contact interface,cetyltrimethylammonium chloride(CTAC)was introduced into the lower interface of HTL-free carbon-based perovskite solar cells,because CTAC can be used as interface modification material to passivate the buried interface of perovskite and promote grain growth.It was found that CTAC can not only passivate the interface defects of perovskite,but also improve the crystalline quality of perovskite.As a result,the photovoltaic conversion efficiency of reaches 17.18%,which is 12.5%higher than that of the control group.After 20 days in air with 60%RH humidity,the cell can still maintain more than 90%of the initial efficiency,which provides a new strategy for interfacial passivation of perovskite solar cells.
基金Project(2023RC3066)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2023JJ50079)supported by the Hunan Provincial Natural Science Foundation,China。
文摘Carbonized melamine foam has been recognized as a promising material for microwave absorption due to its exceptional thermal stability,lightweight,and remarkable dielectric properties.In this study,we investigated the impact of nitric acid oxidation on the surface of carbonized melamine foam and its microwave absorption properties.The treated foam exhibits optimal reflection loss of−21.51 dB at 13.20 GHz,with an effective absorption bandwidth of 7.04 GHz.The enhanced absorption properties are primarily attributed to the strengthened dielectric loss,improved impedance matching,and increased polarization losses resulting from the oxidized surfaces.This research demonstrates a promising new approach for research into surface treatments to improve the performances of microwave absorbers.