To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development...To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development.This involved exploring the deep integration of next-generation artificial intelligence technologies,such as sensing technology,automatic control technology,big data technology,deep learning,and machine vision,with key operational processes,including TBM excavation,direction adjustment,step changes,inverted arch block assembly,material transportation,and operation status assurance.The results of this integration are summarized as follows.(1)TBM key excavation parameter prediction algorithm was developed with an accuracy rate exceeding 90%.The TBM intelligent step-change control algorithm,based on machine vision,achieved an image segmentation accuracy rate of 95%and gripper shoe positioning error of±5 mm.(2)An automatic positioning system for inverted arch blocks was developed,enabling real-time perception of the spatial position and deviation during the assembly process.The system maintains an elevation positioning deviation within±3 mm and a horizontal positioning deviation within±10 mm,reducing the number of surveyors in each work team.(3)A TBM intelligent rail transportation system that achieves real-time human-machine positioning,automatic switch opening and closing,automatic obstacle avoidance,intelligent transportation planning,and integrated scheduling and command was designed.Each locomotive formation reduces one shunter and improves comprehensive transportation efficiency by more than 20%.(4)Intelligent analysis and prediction algorithms were developed to monitor and predict the trends of the hydraulic and gear oil parameters in real time,enhancing the proactive maintenance and system reliability.展开更多
High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and ...High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and process optimization,characterized by low efficiency and high costs.The integration of Artificial Intelligence(AI)technologies has provided innovative solutions for HEAs research.This review presented a detailed overview of recent advancements in AI applications for structural modeling and mechanical property prediction of HEAs.Furthermore,it discussed the advantages of big data analytics in facilitating alloy composition design and screening,quality control,and defect prediction,as well as the construction and sharing of specialized material databases.The paper also addressed the existing challenges in current AI-driven HEAs research,including issues related to data quality,model interpretability,and cross-domain knowledge integration.Additionally,it proposed prospects for the synergistic development of AI-enhanced computational materials science and experimental validation systems.展开更多
This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,an...This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,and a CMOS sensor.In view of the significant contrast between face and background in thermal infra⁃red images,this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny,lightweight detector named YOLO-Fastest-IR.Four YOLO-Fastest-IR models(IR0 to IR3)with different scales are designed based on YOLO-Fastest.To train and evaluate these lightweight models,a multi-user low-resolution thermal face database(RGBT-MLTF)was collected,and the four networks were trained.Experiments demon⁃strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks.The proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed,making it more suitable for deployment on mobile platforms or embedded devices.After obtaining the region of interest(ROI)in the infrared(IR)image,the RGB camera is guided by the thermal infrared face detection results to achieve fine positioning of the RGB face.Experimental results show that YOLO-Fastest-IR achieves a frame rate of 92.9 FPS on a Raspberry Pi 4B and successfully detects 97.4%of faces in the RGBT-MLTF test set.Ultimate⁃ly,an infrared temperature measurement system with low cost,strong robustness,and high real-time perfor⁃mance was integrated,achieving a temperature measurement accuracy of 0.3℃.展开更多
[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infra...[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infrastructure such as pipe networks for urban stormwater management is not enough to deal with urban rainstorm flood disasters under extreme rainfall events.The integration of green,grey and blue systems(GGB-integrated system)is gradually gaining recognition in the field of global flood prevention.It is necessary to further clarify the connotation,technical and engineering implementation strategies of the GGB-integrated system,to provide support for the resilient city construction.[Methods]Through literature retrieval and analysis,the relevant research and progress related to the layout optimization and joint scheduling optimization of the GGBintegrated system were systematically reviewed.In response to existing limitations and future engineering application requirements,key supporting technologies including the utilization of overground emergency storage spaces,safety protection of underground important infrastructure and multi-departmental collaboration,were proposed.A layout optimization framework and a joint scheduling framework for the GGB-integrated system were also developed.[Results]Current research on layout optimization predominantly focuses on the integration of green system and grey system,with relatively fewer studies incorporating blue system infrastructure into the optimization process.Moreover,these studies tend to be on a smaller scale with simpler scenarios,which do not fully capture the complexity of real-world systems.Additionally,optimization objective tend to prioritize environmental and economic goals,while social and ecological factors are less frequently considered.Current research on joint scheduling optimization is often limited to small-scale plots,with insufficient attention paid to the entire system.There is a deficiency in method for real-time,automated determination of optimal control strategies for combinations of multiple system facilities based on actual rainfall-runoff processes.Additionally,the application of emergency facilities during extreme conditions is not sufficiently addressed.Furthermore,both layout optimization and joint scheduling optimization lack consideration of the mute feed effect of flood and waterlogging in urban,watershed and regional scales.[Conclusion]Future research needs to improve the theoretical framework for layout optimization and joint scheduling optimization of GGB-integrated system.Through the comprehensive application of the Internet of things,artificial intelligence,coupling model development,multi-scale analysis,multi-scenario simulation,and the establishment of multi-departmental collaboration mechanisms,it can enhance the flood resilience of urban areas in response to rainfall events of varying intensities,particularly extreme rainfall events.展开更多
The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precisio...The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.展开更多
Since the beginning of the 21st century,advances in big data and artificial intelligence have driven a paradigm shift in the geosciences,moving the field from qualitative descriptions toward quantitative analysis,from...Since the beginning of the 21st century,advances in big data and artificial intelligence have driven a paradigm shift in the geosciences,moving the field from qualitative descriptions toward quantitative analysis,from observing phenomena to uncovering underlying mechanisms,from regional-scale investigations to global perspectives,and from experience-based inference toward data-and model-enabled intelligent prediction.AlphaEarth Foundations(AEF)is a next-generation geospatial intelligence platform that addresses these changes by introducing a unified 64-dimensional shared embedding space,enabling-for the first time-standardized representation and seamless integration of 12 distinct types of Earth observation data,including optical,radar,and lidar.This framework significantly improves data assimilation efficiency and resolves the persistent problem of“data silos”in geoscience research.AEF is helping redefine research methodologies and fostering breakthroughs,particularly in quantitative Earth system science.This paper systematically examines how AEF’s innovative architecture-featuring multi-source data fusion,high-dimensional feature representation learning,and a scalable computational framework-facilitates intelligent,precise,and realtime data-driven geoscientific research.Using case studies from resource and environmental applications,we demonstrate AEF’s broad potential and identify emerging innovation needs.Our findings show that AEF not only enhances the efficiency of solving traditional geoscientific problems but also stimulates novel research directions and methodological approaches.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Bejjing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on bchalf of KcAi Communications Co,Ltd.)is an intecrnational,pcer-reviewed open access journal bclongi...Journal of Future Foods(ISSN 2772-5669.Owner:Bejjing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on bchalf of KcAi Communications Co,Ltd.)is an intecrnational,pcer-reviewed open access journal bclonging to the disciplinc of food scicnce and technology.The aim of the journal is to report latcst rescarch results of high-tcch in food science.We welcome submissions that drive the ficld of food science towards whole food nutrition,intelligencc and high technology.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Fourier Ptychographic Microscopy(FPM)is a high-throughput computational optical imaging technology reported in 2013.It effectively breaks through the trade-off between high-resolution imaging and wide-field imaging.In...Fourier Ptychographic Microscopy(FPM)is a high-throughput computational optical imaging technology reported in 2013.It effectively breaks through the trade-off between high-resolution imaging and wide-field imaging.In recent years,it has been found that FPM is not only a tool to break through the trade-off between field of view and spatial resolution,but also a paradigm to break through those trade-off problems,thus attracting extensive attention.Compared with previous reviews,this review does not introduce its concept,basic principles,optical system and series of applications once again,but focuses on elaborating the three major difficulties faced by FPM technology in the process from“looking good”in the laboratory to“working well”in practical applications:mismatch between numerical model and physical reality,long reconstruction time and high computing power demand,and lack of multi-modal expansion.It introduces how to achieve key technological innovations in FPM through the dual drive of Artificial Intelligence(AI)and physics,including intelligent reconstruction algorithms introducing machine learning concepts,optical-algorithm co-design,fusion of frequency domain extrapolation methods and generative adversarial networks,multi-modal imaging schemes and data fusion enhancement,etc.,gradually solving the difficulties of FPM technology.Conversely,this review deeply considers the unique value of FPM technology in potentially feeding back to the development of“AI+optics”,such as providing AI benchmark tests under physical constraints,inspirations for the balance of computing power and bandwidth in miniaturized intelligent microscopes,and photoelectric hybrid architectures.Finally,it introduces the industrialization path and frontier directions of FPM technology,pointing out that with the promotion of the dual drive of AI and physics,it will generate a large number of industrial application case,and looks forward to the possibilities of future application scenarios and expansions,for instance,body fluid biopsy and point-of-care testing at the grassroots level represent the expansion of the growth market.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belongi...Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.展开更多
The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-inpu...The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-input multiple-output(MIMO)communication system with a STAR-RIS,a base station(BS),an eavesdropper,and multiple users,the system security rate is studied.A joint design of the power allocation at the transmitter and phase shift matrices for reflection and transmission at the STAR-RIS is conducted,in order to maximize the worst achievable security data rate(ASDR).Since the problem is nonconvex and hence challenging,a particle swarm optimization(PSO)based algorithm is developed to tackle the problem.Both the cases of continuous and discrete phase shift matrices at the STAR-RIS are considered.Simulation results demonstrate the effectiveness of the proposed algorithm and shows the benefits of using STAR-RIS in MIMO mutliuser systems.展开更多
Performance-based warranties(PBWs)are widely used in industry and manufacturing.Given that PBW can impose financial burdens on manufacturers,rational maintenance decisions are essential for expanding profit margins.Th...Performance-based warranties(PBWs)are widely used in industry and manufacturing.Given that PBW can impose financial burdens on manufacturers,rational maintenance decisions are essential for expanding profit margins.This paper proposes an optimization model for PBW decisions for systems affected by Gamma degradation processes,incorporating periodic inspection.A system performance degradation model is established.Preventive maintenance probability and corrective renewal probability models are developed to calculate expected warranty costs and system availability.A benefits function,which includes incentives,is constructed to optimize the initial and subsequent inspection intervals and preventive maintenance thresholds,thereby maximizing warranty profit.An improved sparrow search algorithm is developed to optimize the model,with a case study on large steam turbine rotor shafts.The results suggest the optimal PBW strategy involves an initial inspection interval of approximately 20 months,with subsequent intervals of about four months,and a preventive maintenance threshold of approximately 37.39 mm wear.When compared to common cost-minimization-based condition maintenance strategies and PBW strategies that do not differentiate between initial and subsequent inspection intervals,the proposed PBW strategy increases the manufacturer’s profit by 1%and 18%,respectively.Sensitivity analyses provide managerial recommendations for PBW implementation.The PBW strategy proposed in this study significantly increases manufacturers’profits by optimizing inspection intervals and preventive maintenance thresholds,and manufacturers should focus on technological improvement in preventive maintenance and cost control to further enhance earnings.展开更多
目前新疆植棉区已实现棉花栽培全程机械化与半自动化。在此基础上,通过融合代表新质生产力的第五代移动通信技术(fifth generation of mobile communications technology,5G)、物联网、人工智能(artificial intelligence,AI)、大数据、...目前新疆植棉区已实现棉花栽培全程机械化与半自动化。在此基础上,通过融合代表新质生产力的第五代移动通信技术(fifth generation of mobile communications technology,5G)、物联网、人工智能(artificial intelligence,AI)、大数据、云计算等先进技术,提出棉花“AI栽培体系”构想。论述了“AI栽培体系”硬件与软件的构成及其在棉花栽培中的运行机制,实现棉花栽培全流程精准化、生产集约化、资源最优化、管理高效化、决策智能化和作业无人化的技术突破,为智慧农业装备研发注入创新思路,为新疆未来推广全域自动化智能化棉花栽培提供实践指引。展开更多
文摘To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development.This involved exploring the deep integration of next-generation artificial intelligence technologies,such as sensing technology,automatic control technology,big data technology,deep learning,and machine vision,with key operational processes,including TBM excavation,direction adjustment,step changes,inverted arch block assembly,material transportation,and operation status assurance.The results of this integration are summarized as follows.(1)TBM key excavation parameter prediction algorithm was developed with an accuracy rate exceeding 90%.The TBM intelligent step-change control algorithm,based on machine vision,achieved an image segmentation accuracy rate of 95%and gripper shoe positioning error of±5 mm.(2)An automatic positioning system for inverted arch blocks was developed,enabling real-time perception of the spatial position and deviation during the assembly process.The system maintains an elevation positioning deviation within±3 mm and a horizontal positioning deviation within±10 mm,reducing the number of surveyors in each work team.(3)A TBM intelligent rail transportation system that achieves real-time human-machine positioning,automatic switch opening and closing,automatic obstacle avoidance,intelligent transportation planning,and integrated scheduling and command was designed.Each locomotive formation reduces one shunter and improves comprehensive transportation efficiency by more than 20%.(4)Intelligent analysis and prediction algorithms were developed to monitor and predict the trends of the hydraulic and gear oil parameters in real time,enhancing the proactive maintenance and system reliability.
文摘High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and process optimization,characterized by low efficiency and high costs.The integration of Artificial Intelligence(AI)technologies has provided innovative solutions for HEAs research.This review presented a detailed overview of recent advancements in AI applications for structural modeling and mechanical property prediction of HEAs.Furthermore,it discussed the advantages of big data analytics in facilitating alloy composition design and screening,quality control,and defect prediction,as well as the construction and sharing of specialized material databases.The paper also addressed the existing challenges in current AI-driven HEAs research,including issues related to data quality,model interpretability,and cross-domain knowledge integration.Additionally,it proposed prospects for the synergistic development of AI-enhanced computational materials science and experimental validation systems.
基金Supported by the Fundamental Research Funds for the Central Universities(2024300443)the Natural Science Foundation of Jiangsu Province(BK20241224).
文摘This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.The system consists of a low-resolution long-wavelength infrared detector,a digital temperature and humid⁃ity sensor,and a CMOS sensor.In view of the significant contrast between face and background in thermal infra⁃red images,this paper explores a suitable accuracy-latency tradeoff for thermal face detection and proposes a tiny,lightweight detector named YOLO-Fastest-IR.Four YOLO-Fastest-IR models(IR0 to IR3)with different scales are designed based on YOLO-Fastest.To train and evaluate these lightweight models,a multi-user low-resolution thermal face database(RGBT-MLTF)was collected,and the four networks were trained.Experiments demon⁃strate that the lightweight convolutional neural network performs well in thermal infrared face detection tasks.The proposed algorithm outperforms existing face detection methods in both positioning accuracy and speed,making it more suitable for deployment on mobile platforms or embedded devices.After obtaining the region of interest(ROI)in the infrared(IR)image,the RGB camera is guided by the thermal infrared face detection results to achieve fine positioning of the RGB face.Experimental results show that YOLO-Fastest-IR achieves a frame rate of 92.9 FPS on a Raspberry Pi 4B and successfully detects 97.4%of faces in the RGBT-MLTF test set.Ultimate⁃ly,an infrared temperature measurement system with low cost,strong robustness,and high real-time perfor⁃mance was integrated,achieving a temperature measurement accuracy of 0.3℃.
文摘[Objective]Under the combined impact of climate change and urbanization,urban rainstorm flood disasters occur frequently,seriously restricting urban safety and sustainable development.Relying on traditional grey infrastructure such as pipe networks for urban stormwater management is not enough to deal with urban rainstorm flood disasters under extreme rainfall events.The integration of green,grey and blue systems(GGB-integrated system)is gradually gaining recognition in the field of global flood prevention.It is necessary to further clarify the connotation,technical and engineering implementation strategies of the GGB-integrated system,to provide support for the resilient city construction.[Methods]Through literature retrieval and analysis,the relevant research and progress related to the layout optimization and joint scheduling optimization of the GGBintegrated system were systematically reviewed.In response to existing limitations and future engineering application requirements,key supporting technologies including the utilization of overground emergency storage spaces,safety protection of underground important infrastructure and multi-departmental collaboration,were proposed.A layout optimization framework and a joint scheduling framework for the GGB-integrated system were also developed.[Results]Current research on layout optimization predominantly focuses on the integration of green system and grey system,with relatively fewer studies incorporating blue system infrastructure into the optimization process.Moreover,these studies tend to be on a smaller scale with simpler scenarios,which do not fully capture the complexity of real-world systems.Additionally,optimization objective tend to prioritize environmental and economic goals,while social and ecological factors are less frequently considered.Current research on joint scheduling optimization is often limited to small-scale plots,with insufficient attention paid to the entire system.There is a deficiency in method for real-time,automated determination of optimal control strategies for combinations of multiple system facilities based on actual rainfall-runoff processes.Additionally,the application of emergency facilities during extreme conditions is not sufficiently addressed.Furthermore,both layout optimization and joint scheduling optimization lack consideration of the mute feed effect of flood and waterlogging in urban,watershed and regional scales.[Conclusion]Future research needs to improve the theoretical framework for layout optimization and joint scheduling optimization of GGB-integrated system.Through the comprehensive application of the Internet of things,artificial intelligence,coupling model development,multi-scale analysis,multi-scenario simulation,and the establishment of multi-departmental collaboration mechanisms,it can enhance the flood resilience of urban areas in response to rainfall events of varying intensities,particularly extreme rainfall events.
基金Supported by the National Key Research and Development Program of China(2022YFB3904803)。
文摘The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.
基金National Natural Science Foundation of China Key Project(No.42050103)Higher Education Disciplinary Innovation Program(No.B25052)+2 种基金the Guangdong Pearl River Talent Program Innovative and Entrepreneurial Team Project(No.2021ZT09H399)the Ministry of Education’s Frontiers Science Center for Deep-Time Digital Earth(DDE)(No.2652023001)Geological Survey Project of China Geological Survey(DD20240206201)。
文摘Since the beginning of the 21st century,advances in big data and artificial intelligence have driven a paradigm shift in the geosciences,moving the field from qualitative descriptions toward quantitative analysis,from observing phenomena to uncovering underlying mechanisms,from regional-scale investigations to global perspectives,and from experience-based inference toward data-and model-enabled intelligent prediction.AlphaEarth Foundations(AEF)is a next-generation geospatial intelligence platform that addresses these changes by introducing a unified 64-dimensional shared embedding space,enabling-for the first time-standardized representation and seamless integration of 12 distinct types of Earth observation data,including optical,radar,and lidar.This framework significantly improves data assimilation efficiency and resolves the persistent problem of“data silos”in geoscience research.AEF is helping redefine research methodologies and fostering breakthroughs,particularly in quantitative Earth system science.This paper systematically examines how AEF’s innovative architecture-featuring multi-source data fusion,high-dimensional feature representation learning,and a scalable computational framework-facilitates intelligent,precise,and realtime data-driven geoscientific research.Using case studies from resource and environmental applications,we demonstrate AEF’s broad potential and identify emerging innovation needs.Our findings show that AEF not only enhances the efficiency of solving traditional geoscientific problems but also stimulates novel research directions and methodological approaches.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Bejjing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on bchalf of KcAi Communications Co,Ltd.)is an intecrnational,pcer-reviewed open access journal bclonging to the disciplinc of food scicnce and technology.The aim of the journal is to report latcst rescarch results of high-tcch in food science.We welcome submissions that drive the ficld of food science towards whole food nutrition,intelligencc and high technology.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
基金National Natural Science Foundation of China(No.12574332)the Space Optoelectronic Measurement and Perception Lab.,Beijing Institute of Control Engineering(No.LabSOMP-2023-10)Major Science and Technology Innovation Program of Xianyang City(No.L2024-ZDKJ-ZDCGZH-0021)。
文摘Fourier Ptychographic Microscopy(FPM)is a high-throughput computational optical imaging technology reported in 2013.It effectively breaks through the trade-off between high-resolution imaging and wide-field imaging.In recent years,it has been found that FPM is not only a tool to break through the trade-off between field of view and spatial resolution,but also a paradigm to break through those trade-off problems,thus attracting extensive attention.Compared with previous reviews,this review does not introduce its concept,basic principles,optical system and series of applications once again,but focuses on elaborating the three major difficulties faced by FPM technology in the process from“looking good”in the laboratory to“working well”in practical applications:mismatch between numerical model and physical reality,long reconstruction time and high computing power demand,and lack of multi-modal expansion.It introduces how to achieve key technological innovations in FPM through the dual drive of Artificial Intelligence(AI)and physics,including intelligent reconstruction algorithms introducing machine learning concepts,optical-algorithm co-design,fusion of frequency domain extrapolation methods and generative adversarial networks,multi-modal imaging schemes and data fusion enhancement,etc.,gradually solving the difficulties of FPM technology.Conversely,this review deeply considers the unique value of FPM technology in potentially feeding back to the development of“AI+optics”,such as providing AI benchmark tests under physical constraints,inspirations for the balance of computing power and bandwidth in miniaturized intelligent microscopes,and photoelectric hybrid architectures.Finally,it introduces the industrialization path and frontier directions of FPM technology,pointing out that with the promotion of the dual drive of AI and physics,it will generate a large number of industrial application case,and looks forward to the possibilities of future application scenarios and expansions,for instance,body fluid biopsy and point-of-care testing at the grassroots level represent the expansion of the growth market.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘Journal of Future Foods(ISSN 2772-5669.Owner:Beijing Academy of Food Sciences.Production and Hosting:Elsevier B.V.on behalf of KeAi Communications Co.,Ltd.)is an international,peer-reviewed open access journal belonging to the discipline of food science and technology.The aim of the journal is to report latest research results of high-tech in food science.We welcome submissions that drive the field of food science towards whole food nutrition,intelligence and high technology.
文摘The simultaneous transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)can independently adjust surface’s reflection and transmission coefficients so as to enhance space coverage.For a multiple-input multiple-output(MIMO)communication system with a STAR-RIS,a base station(BS),an eavesdropper,and multiple users,the system security rate is studied.A joint design of the power allocation at the transmitter and phase shift matrices for reflection and transmission at the STAR-RIS is conducted,in order to maximize the worst achievable security data rate(ASDR).Since the problem is nonconvex and hence challenging,a particle swarm optimization(PSO)based algorithm is developed to tackle the problem.Both the cases of continuous and discrete phase shift matrices at the STAR-RIS are considered.Simulation results demonstrate the effectiveness of the proposed algorithm and shows the benefits of using STAR-RIS in MIMO mutliuser systems.
基金supported by the National Natural Science Foundation of China(71871219).
文摘Performance-based warranties(PBWs)are widely used in industry and manufacturing.Given that PBW can impose financial burdens on manufacturers,rational maintenance decisions are essential for expanding profit margins.This paper proposes an optimization model for PBW decisions for systems affected by Gamma degradation processes,incorporating periodic inspection.A system performance degradation model is established.Preventive maintenance probability and corrective renewal probability models are developed to calculate expected warranty costs and system availability.A benefits function,which includes incentives,is constructed to optimize the initial and subsequent inspection intervals and preventive maintenance thresholds,thereby maximizing warranty profit.An improved sparrow search algorithm is developed to optimize the model,with a case study on large steam turbine rotor shafts.The results suggest the optimal PBW strategy involves an initial inspection interval of approximately 20 months,with subsequent intervals of about four months,and a preventive maintenance threshold of approximately 37.39 mm wear.When compared to common cost-minimization-based condition maintenance strategies and PBW strategies that do not differentiate between initial and subsequent inspection intervals,the proposed PBW strategy increases the manufacturer’s profit by 1%and 18%,respectively.Sensitivity analyses provide managerial recommendations for PBW implementation.The PBW strategy proposed in this study significantly increases manufacturers’profits by optimizing inspection intervals and preventive maintenance thresholds,and manufacturers should focus on technological improvement in preventive maintenance and cost control to further enhance earnings.
文摘目前新疆植棉区已实现棉花栽培全程机械化与半自动化。在此基础上,通过融合代表新质生产力的第五代移动通信技术(fifth generation of mobile communications technology,5G)、物联网、人工智能(artificial intelligence,AI)、大数据、云计算等先进技术,提出棉花“AI栽培体系”构想。论述了“AI栽培体系”硬件与软件的构成及其在棉花栽培中的运行机制,实现棉花栽培全流程精准化、生产集约化、资源最优化、管理高效化、决策智能化和作业无人化的技术突破,为智慧农业装备研发注入创新思路,为新疆未来推广全域自动化智能化棉花栽培提供实践指引。