Four intelligent optimization algorithms are compared by searching for control pulses to achieve the preparation of target quantum states for closed and open quantum systems, which include differential evolution(DE), ...Four intelligent optimization algorithms are compared by searching for control pulses to achieve the preparation of target quantum states for closed and open quantum systems, which include differential evolution(DE), particle swarm optimization(PSO), quantum-behaved particle swarm optimization(QPSO), and quantum evolutionary algorithm(QEA).We compare their control performance and point out their differences. By sampling and learning for uncertain quantum systems, the robustness of control pulses found by these four algorithms is also demonstrated and compared. The resulting research shows that the QPSO nearly outperforms the other three algorithms for all the performance criteria considered.This conclusion provides an important reference for solving complex quantum control problems by optimization algorithms and makes the QPSO be a powerful optimization tool.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 61873251)。
文摘Four intelligent optimization algorithms are compared by searching for control pulses to achieve the preparation of target quantum states for closed and open quantum systems, which include differential evolution(DE), particle swarm optimization(PSO), quantum-behaved particle swarm optimization(QPSO), and quantum evolutionary algorithm(QEA).We compare their control performance and point out their differences. By sampling and learning for uncertain quantum systems, the robustness of control pulses found by these four algorithms is also demonstrated and compared. The resulting research shows that the QPSO nearly outperforms the other three algorithms for all the performance criteria considered.This conclusion provides an important reference for solving complex quantum control problems by optimization algorithms and makes the QPSO be a powerful optimization tool.