Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infr...Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infrared target intrusion detection algorithm based on feature fusion and enhancement was proposed.This algorithm combines static target mode analysis and dynamic multi-frame correlation detection to extract infrared target features at different levels.Among them,LBP texture analysis can be used to effectively identify the posterior feature patterns which have been contained in the target library,while motion frame difference method can detect the moving regions of the image,improve the integrity of target regions such as camouflage,sheltering and deformation.In order to integrate the advantages of the two methods,the enhanced convolutional neural network was designed and the feature images obtained by the two methods were fused and enhanced.The enhancement module of the network strengthened and screened the targets,and realized the background suppression of infrared images.Based on the experiments,the effect of the proposed method and the comparison method on the background suppression and detection performance was evaluated,and the results showed that the SCRG and BSF values of the method in this paper had a better performance in multiple data sets,and it’s detection performance was far better than the comparison algorithm.The experiment results indicated that,compared with traditional infrared target detection methods,the proposed method could detect the infrared invasion target more accurately,and suppress the background noise more effectively.展开更多
Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small targe...Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.展开更多
According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extrac...According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance.展开更多
This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the g...This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.展开更多
Infrared false target is an important mean to induce the infrared-guided weapons,and the key issue is how to keep the surface temperature of the infrared false target to be the same as that of the object to be protect...Infrared false target is an important mean to induce the infrared-guided weapons,and the key issue is how to keep the surface temperature of the infrared false target to be the same as that of the object to be protected.One-dimensional heat transfer models of a metal plate and imitative material were established to explore the influences of the thermophysical properties of imitative material on the surface temperature difference(STD) between the metal plate and imitative material which were subjected to periodical ambient conditions.It is elucidated that the STD is determined by the imitative material’s dimensionless thickness(dim*,) and the thermal inertia(Pim).When dim* is above 1.0,the STD is invariable as long as Pim is a constant.And if the dimensionless thickness of metal plate(d,m*) is also larger than 1.0,the STD approaches to zero as long as Pimis the same as the thermal inertia of metal plate(Pm).When dim* is between 0.08 and 1,the STD varies irregularly with Pim and dim*.However,if dm* is also in the range of 0.08-1,the STD approaches to zero on condition that Pim=Pm and dim*= dm*.If dim*,is below 0.08,the STD is unchanged when Pimdim* is a constant.And if dm* is also less than 0.08,the STD approaches to zero as long as Pimdim* = Pmdm*.Furthermore,an applicationoriented discussion indicates that the imitative material can be both light and thin via the application of the phase change material with a preset STD because of its high specific heat capacity during the phase transition process.展开更多
Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregul...Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregular or the background is complex. In this paper, we propose a pixel-level local contrast measure(PLLCM), which can subdivide small targets and backgrounds at pixel level simultaneously.With pixel-level segmentation, the difference between the target and the background becomes more obvious, which helps to improve the detection performance. First, we design a multiscale sliding window to quickly extract candidate target pixels. Then, a local window based on random walker(RW) is designed for pixel-level target segmentation. After that, PLLCM incorporating probability weights and scale constraints is proposed to accurately measure local contrast and suppress various types of background interference. Finally, an adaptive threshold operation is applied to separate the target from the PLLCM enhanced map. Experimental results show that the proposed method has a higher detection rate and a lower false alarm rate than the baseline algorithms, while achieving a high speed.展开更多
The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circ...The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circumstances. Thus, a threshold selection method is proposed on the basis of area difference between background and object and intra-class variance. The threshold selection formulae based on one-dimensional (1-D) histogram, two-dimensional (2-D) histogram vertical segmentation and 2-D histogram oblique segmentation are given. A fast recursive algorithm of threshold selection in 2-D histogram oblique segmentation is derived. The segmented images and processing time of the proposed method are given in experiments. It is compared with some fast algorithms, such as Otsu, maximum entropy and Fisher threshold selection methods. The experimental results show that the proposed method can effectively segment the small object images and has better anti-noise property.展开更多
基金This work was supported by the National Natural Science Foundation of China(grant number:61671470)the National Key Research and Development Program of China(grant number:2016YFC0802904)the Postdoctoral Science Foundation Funded Project of China(grant number:2017M623423).
文摘Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infrared target intrusion detection algorithm based on feature fusion and enhancement was proposed.This algorithm combines static target mode analysis and dynamic multi-frame correlation detection to extract infrared target features at different levels.Among them,LBP texture analysis can be used to effectively identify the posterior feature patterns which have been contained in the target library,while motion frame difference method can detect the moving regions of the image,improve the integrity of target regions such as camouflage,sheltering and deformation.In order to integrate the advantages of the two methods,the enhanced convolutional neural network was designed and the feature images obtained by the two methods were fused and enhanced.The enhancement module of the network strengthened and screened the targets,and realized the background suppression of infrared images.Based on the experiments,the effect of the proposed method and the comparison method on the background suppression and detection performance was evaluated,and the results showed that the SCRG and BSF values of the method in this paper had a better performance in multiple data sets,and it’s detection performance was far better than the comparison algorithm.The experiment results indicated that,compared with traditional infrared target detection methods,the proposed method could detect the infrared invasion target more accurately,and suppress the background noise more effectively.
基金Supported by the Key Laboratory Fund for Equipment Pre-Research(6142207210202)。
文摘Aiming at the problem that infrared small target detection faces low contrast between the background and the target and insufficient noise suppression ability under the complex cloud background,an infrared small target detection method based on the tensor nuclear norm and direction residual weighting was proposed.Based on converting the infrared image into an infrared patch tensor model,from the perspective of the low-rank nature of the background tensor,and taking advantage of the difference in contrast between the background and the target in different directions,we designed a double-neighborhood local contrast based on direction residual weighting method(DNLCDRW)combined with the partial sum of tensor nuclear norm(PSTNN)to achieve effective background suppression and recovery of infrared small targets.Experiments show that the algorithm is effective in suppressing the background and improving the detection ability of the target.
基金supported by the National Key Research and Development Program of China(2016YFB0500901)the Natural Science Foundation of Shanghai(18ZR1437200)the Satellite Mapping Technology and Application National Key Laboratory of Geographical Information Bureau(KLSMTA-201709)
文摘According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance.
基金supported by the National Natural Science Foundation of China (61171194)
文摘This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.
基金funded by the National Natural Science Foundation of China (No. 51576188)
文摘Infrared false target is an important mean to induce the infrared-guided weapons,and the key issue is how to keep the surface temperature of the infrared false target to be the same as that of the object to be protected.One-dimensional heat transfer models of a metal plate and imitative material were established to explore the influences of the thermophysical properties of imitative material on the surface temperature difference(STD) between the metal plate and imitative material which were subjected to periodical ambient conditions.It is elucidated that the STD is determined by the imitative material’s dimensionless thickness(dim*,) and the thermal inertia(Pim).When dim* is above 1.0,the STD is invariable as long as Pim is a constant.And if the dimensionless thickness of metal plate(d,m*) is also larger than 1.0,the STD approaches to zero as long as Pimis the same as the thermal inertia of metal plate(Pm).When dim* is between 0.08 and 1,the STD varies irregularly with Pim and dim*.However,if dm* is also in the range of 0.08-1,the STD approaches to zero on condition that Pim=Pm and dim*= dm*.If dim*,is below 0.08,the STD is unchanged when Pimdim* is a constant.And if dm* is also less than 0.08,the STD approaches to zero as long as Pimdim* = Pmdm*.Furthermore,an applicationoriented discussion indicates that the imitative material can be both light and thin via the application of the phase change material with a preset STD because of its high specific heat capacity during the phase transition process.
基金supported by the National Natural Science Foundation of China under Grant 62003247, Grant 62075169, and Grant 62061160370。
文摘Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregular or the background is complex. In this paper, we propose a pixel-level local contrast measure(PLLCM), which can subdivide small targets and backgrounds at pixel level simultaneously.With pixel-level segmentation, the difference between the target and the background becomes more obvious, which helps to improve the detection performance. First, we design a multiscale sliding window to quickly extract candidate target pixels. Then, a local window based on random walker(RW) is designed for pixel-level target segmentation. After that, PLLCM incorporating probability weights and scale constraints is proposed to accurately measure local contrast and suppress various types of background interference. Finally, an adaptive threshold operation is applied to separate the target from the PLLCM enhanced map. Experimental results show that the proposed method has a higher detection rate and a lower false alarm rate than the baseline algorithms, while achieving a high speed.
基金Sponsored by The National Natural Science Foundation of China(60872065)Science and Technology on Electro-optic Control Laboratory and Aviation Science Foundation(20105152026)State Key Laboratory Open Fund of Novel Software Technology,Nanjing University(KFKT2010B17)
文摘The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circumstances. Thus, a threshold selection method is proposed on the basis of area difference between background and object and intra-class variance. The threshold selection formulae based on one-dimensional (1-D) histogram, two-dimensional (2-D) histogram vertical segmentation and 2-D histogram oblique segmentation are given. A fast recursive algorithm of threshold selection in 2-D histogram oblique segmentation is derived. The segmented images and processing time of the proposed method are given in experiments. It is compared with some fast algorithms, such as Otsu, maximum entropy and Fisher threshold selection methods. The experimental results show that the proposed method can effectively segment the small object images and has better anti-noise property.