Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual charac...Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.展开更多
This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the g...This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.展开更多
Rockburst is a dynamic phenomenon accompanied by acoustic emission(AE)activities.It is difficult to predict rockburst accurately.Based on the fast Fourier transform(FFT)method and the information entropy theory,the ev...Rockburst is a dynamic phenomenon accompanied by acoustic emission(AE)activities.It is difficult to predict rockburst accurately.Based on the fast Fourier transform(FFT)method and the information entropy theory,the evolution model of dominant frequency entropy was established.The AE energy,frequency and stress were synthetically considered to predict rockburst.Under the triaxial and the single-face unloading tests,the relationship between AE energy and the development of internal cracks was analyzed.Using the FFT method,the distribution characteristics of AE dominant frequency values were obtained.Based on the information entropy theory,the dominant frequencies evolved patterns were ascertained.It was observed that the evolution models of the dominant frequency entropy were nearly the same and shared a characteristic“undulation-decrease-rise-sharp decrease”pattern.Results show that AE energy will be released suddenly before rockburst.The density of intermediate frequency increased prior to rockburst.The dominant frequency entropy reached a relative maximum value before rockburst,and then decreased sharply.These features could be used as a precursory information for predicting rockburst.The proposed relative maximum value could be as a key point to predict rockburst.This is a meaningful attempt on predicting rockburst.展开更多
The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and e...The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.展开更多
With respect to the subjective factors and nonlinear characteristics inherent in the important identification of fault tree analysis (FTA), a new important measure of FTA is proposed based on possibilistic informati...With respect to the subjective factors and nonlinear characteristics inherent in the important identification of fault tree analysis (FTA), a new important measure of FTA is proposed based on possibilistic information entropy. After investigating possibilistic information semantics, measure-theoretic terms, and entropy-like models, a two-dimensional framework has been constructed by combining both the set theory and the measure theory. By adopting the possibilistic assumption in place of the probabilistic one, an axiomatic index of importance is defined in the possibility space and then the modelling principles are presented. An example of the fault tree is thus provided, along with the concordance analysis and other discussions. The more conservative numerical results of importance rankings, which involve the more choices can be viewed as “soft” fault identification under a certain expected value. In the end, extension to evidence space and further research perspectives are discussed.展开更多
An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main f...An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.展开更多
基金Project(50934006) supported by the National Natural Science Foundation of ChinaProject(2010CB732004) supported by the National Basic Research Program of China+1 种基金Project(2009ssxt230) supported by the Central South University Innovation Fund,ChinaProject(CX2011B119) supported by the Graduated Students’Research and Innovation Fund of Hunan Province,China
文摘Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.
基金supported by the National Natural Science Foundation of China (61171194)
文摘This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.
基金Project(2017YFC0804201)supported by the National Key Research and Development Program of ChinaProject(51574246)supported by the National Natural Science Foundation of China+1 种基金Project(2011QZ01)supported by Fundamental Research Funds for the Central Universities,ChinaProject(C201911362)supported by the National Training Program of Innovation and Entrepreneurship for Undergraduates,China。
文摘Rockburst is a dynamic phenomenon accompanied by acoustic emission(AE)activities.It is difficult to predict rockburst accurately.Based on the fast Fourier transform(FFT)method and the information entropy theory,the evolution model of dominant frequency entropy was established.The AE energy,frequency and stress were synthetically considered to predict rockburst.Under the triaxial and the single-face unloading tests,the relationship between AE energy and the development of internal cracks was analyzed.Using the FFT method,the distribution characteristics of AE dominant frequency values were obtained.Based on the information entropy theory,the dominant frequencies evolved patterns were ascertained.It was observed that the evolution models of the dominant frequency entropy were nearly the same and shared a characteristic“undulation-decrease-rise-sharp decrease”pattern.Results show that AE energy will be released suddenly before rockburst.The density of intermediate frequency increased prior to rockburst.The dominant frequency entropy reached a relative maximum value before rockburst,and then decreased sharply.These features could be used as a precursory information for predicting rockburst.The proposed relative maximum value could be as a key point to predict rockburst.This is a meaningful attempt on predicting rockburst.
基金supported by the Natural Science Foundation Research Plan of Shanxi Province (2023JCQN0728)。
文摘The subversive nature of information war lies not only in the information itself, but also in the circulation and application of information. It has always been a challenge to quantitatively analyze the function and effect of information flow through command, control, communications, computer, kill, intelligence,surveillance, reconnaissance (C4KISR) system. In this work, we propose a framework of force of information influence and the methods for calculating the force of information influence between C4KISR nodes of sensing, intelligence processing,decision making and fire attack. Specifically, the basic concept of force of information influence between nodes in C4KISR system is formally proposed and its mathematical definition is provided. Then, based on the information entropy theory, the model of force of information influence between C4KISR system nodes is constructed. Finally, the simulation experiments have been performed under an air defense and attack scenario. The experimental results show that, with the proposed force of information influence framework, we can effectively evaluate the contribution of information circulation through different C4KISR system nodes to the corresponding tasks. Our framework of force of information influence can also serve as an effective tool for the design and dynamic reconfiguration of C4KISR system architecture.
基金supported by the National Natural Science Foundation of China (60674078).
文摘With respect to the subjective factors and nonlinear characteristics inherent in the important identification of fault tree analysis (FTA), a new important measure of FTA is proposed based on possibilistic information entropy. After investigating possibilistic information semantics, measure-theoretic terms, and entropy-like models, a two-dimensional framework has been constructed by combining both the set theory and the measure theory. By adopting the possibilistic assumption in place of the probabilistic one, an axiomatic index of importance is defined in the possibility space and then the modelling principles are presented. An example of the fault tree is thus provided, along with the concordance analysis and other discussions. The more conservative numerical results of importance rankings, which involve the more choices can be viewed as “soft” fault identification under a certain expected value. In the end, extension to evidence space and further research perspectives are discussed.
基金Project(2007CB209402) supported by the National Basic Research Program of China Project(SKLGDUEK0906) supported by the Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering of China
文摘An optimization model of underground mining method selection was established on the basis of the unascertained measurement theory.Considering the geologic conditions,technology,economy and safety production,ten main factors influencing the selection of mining method were taken into account,and the comprehensive evaluation index system of mining method selection was constructed.The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively.New measurement standards were constructed.Then,the unascertained measurement function of each evaluation index was established.The index weights of the factors were calculated by entropy theory,and credible degree recognition criteria were established according to the unascertained measurement theory.The results of mining method evaluation were obtained using the credible degree criteria,thus the best underground mining method was determined.Furthermore,this model was employed for the comprehensive evaluation and selection of the chosen standard mining methods in Xinli Gold Mine in Sanshandao of China.The results show that the relative superiority degrees of mining methods can be calculated using the unascertained measurement optimization model,so the optimal method can be easily determined.Meanwhile,the proposed method can take into account large amount of uncertain information in mining method selection,which can provide an effective way for selecting the optimal underground mining method.