为了提高锂离子电池健康状态(state of health,SOH)估计的精确度,本研究结合卷积神经网络(convolutional neural networks,CNN)强大的局部特征提取能力和Transformer的序列处理能力,提出了基于多项式特征扩展的CNN-Transformer融合模型...为了提高锂离子电池健康状态(state of health,SOH)估计的精确度,本研究结合卷积神经网络(convolutional neural networks,CNN)强大的局部特征提取能力和Transformer的序列处理能力,提出了基于多项式特征扩展的CNN-Transformer融合模型。该方法提取了与电池容量高度相关的增量容量(incremental capacity,IC)曲线峰值、IC曲线对应电压、面积及充电时间作为健康因子,然后将其进行多项式扩展,增加融合模型对输入特征的非线性处理能力。引入主成分分析法(principal component analysis,PCA)对特征空间进行降维,有利于捕获数据有效信息,减少模型训练时间。采用美国国家宇航局(National Aeronautics and Space Administration,NASA)数据集和马里兰大学数据集,通过加入多项式特征前后的CNN-Transformer模型对比、加入多项式特征的CNN-Transformer模型和单一模型算法对比,验证了加入多项式特征的CNN-Transformer融合算法的有效性和精确度,结果表明提出模型的SOH估计精度相较于未加入多项式特征的CNN-Transformer模型,对于B0005、B0006、B0007、B0018数据集分别提高了38.71%、50.28%、4.71%、17.58%。展开更多
增量式学习模型是挖掘大规模文本流数据的一种有效的数据处理技术。无偏协方差无关增量主成分分析(Candid Covariance-free Incremental Principal Component Analysis,CCIPCA)是一种增量主成分分析模型,具有收敛速度快和降维效果好的...增量式学习模型是挖掘大规模文本流数据的一种有效的数据处理技术。无偏协方差无关增量主成分分析(Candid Covariance-free Incremental Principal Component Analysis,CCIPCA)是一种增量主成分分析模型,具有收敛速度快和降维效果好的特点。但是,CCIPCA模型要求训练数据是已经中心化或中心向量固定的。在实际的应用中,CCIPCA往往采用一种近似的中心化算法对新样本进行处理,而不会对历史数据进行中心化修正。针对这一问题,该文提出了一种中心修正增量主成分分析模型(Centred Incremental Principal Component Analysis,CIPCA)。CIPCA算法不仅对新样本进行中心化处理,而且会对历史数据进行准确的中心化修正。在文本流数据上的实验结果表明,CIPCA算法的收敛速度和分类性能明显优于CCIPCA算法,特别是在原始数据的内在模型不稳定的情况下,新算法的优势更为明显。展开更多
文摘为了提高锂离子电池健康状态(state of health,SOH)估计的精确度,本研究结合卷积神经网络(convolutional neural networks,CNN)强大的局部特征提取能力和Transformer的序列处理能力,提出了基于多项式特征扩展的CNN-Transformer融合模型。该方法提取了与电池容量高度相关的增量容量(incremental capacity,IC)曲线峰值、IC曲线对应电压、面积及充电时间作为健康因子,然后将其进行多项式扩展,增加融合模型对输入特征的非线性处理能力。引入主成分分析法(principal component analysis,PCA)对特征空间进行降维,有利于捕获数据有效信息,减少模型训练时间。采用美国国家宇航局(National Aeronautics and Space Administration,NASA)数据集和马里兰大学数据集,通过加入多项式特征前后的CNN-Transformer模型对比、加入多项式特征的CNN-Transformer模型和单一模型算法对比,验证了加入多项式特征的CNN-Transformer融合算法的有效性和精确度,结果表明提出模型的SOH估计精度相较于未加入多项式特征的CNN-Transformer模型,对于B0005、B0006、B0007、B0018数据集分别提高了38.71%、50.28%、4.71%、17.58%。
文摘增量式学习模型是挖掘大规模文本流数据的一种有效的数据处理技术。无偏协方差无关增量主成分分析(Candid Covariance-free Incremental Principal Component Analysis,CCIPCA)是一种增量主成分分析模型,具有收敛速度快和降维效果好的特点。但是,CCIPCA模型要求训练数据是已经中心化或中心向量固定的。在实际的应用中,CCIPCA往往采用一种近似的中心化算法对新样本进行处理,而不会对历史数据进行中心化修正。针对这一问题,该文提出了一种中心修正增量主成分分析模型(Centred Incremental Principal Component Analysis,CIPCA)。CIPCA算法不仅对新样本进行中心化处理,而且会对历史数据进行准确的中心化修正。在文本流数据上的实验结果表明,CIPCA算法的收敛速度和分类性能明显优于CCIPCA算法,特别是在原始数据的内在模型不稳定的情况下,新算法的优势更为明显。