期刊文献+
共找到1,777篇文章
< 1 2 89 >
每页显示 20 50 100
Learning Bayesian network structure with immune algorithm 被引量:4
1
作者 Zhiqiang Cai Shubin Si +1 位作者 Shudong Sun Hongyan Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期282-291,共10页
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith... Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently. 展开更多
关键词 structure learning Bayesian network immune algorithm local optimal structure VACCINATION
在线阅读 下载PDF
An estimation method for direct maintenance cost of aircraft components based on particle swarm optimization with immunity algorithm 被引量:3
2
作者 吴静敏 左洪福 陈勇 《Journal of Central South University》 SCIE EI CAS 2005年第S2期95-101,共7页
A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune se... A particle swarm optimization (PSO) algorithm improved by immunity algorithm (IA) was presented. Memory and self-regulation mechanisms of IA were used to avoid PSO plunging into local optima. Vaccination and immune selection mechanisms were used to prevent the undulate phenomenon during the evolutionary process. The algorithm was introduced through an application in the direct maintenance cost (DMC) estimation of aircraft components. Experiments results show that the algorithm can compute simply and run quickly. It resolves the combinatorial optimization problem of component DMC estimation with simple and available parameters. And it has higher accuracy than individual methods, such as PLS, BP and v-SVM, and also has better performance than other combined methods, such as basic PSO and BP neural network. 展开更多
关键词 aircraft design maintenance COST PARTICLE SWARM optimization immunity algorithm PREDICT
在线阅读 下载PDF
Adaptive immune-genetic algorithm for global optimization to multivariable function 被引量:9
3
作者 Dai Yongshou Li Yuanyuan +2 位作者 Wei Lei Wang Junling Zheng Deling 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期655-660,共6页
An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density opera... An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability, greatly increase the converging speed, and decrease locating the local maxima due to the premature convergence. The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly, guarantees the diversity, stability and good searching ability. 展开更多
关键词 immune-genetic algorithm function optimization hyper-mutation density operator.
在线阅读 下载PDF
Fuzzy least squares support vector machine soft measurement model based on adaptive mutative scale chaos immune algorithm 被引量:8
4
作者 王涛生 左红艳 《Journal of Central South University》 SCIE EI CAS 2014年第2期593-599,共7页
In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong cou... In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%. 展开更多
关键词 CHAOS immune algorithm FUZZY support vector machine
在线阅读 下载PDF
A bi-population immune algorithm for weapon transportation support scheduling problem with pickup and delivery on aircraft carrier deck 被引量:7
5
作者 Fang Guo Wei Han +2 位作者 Xi-chao Su Yu-jie Liu Rong-wei Cui 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期119-134,共16页
The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a nov... The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a novel solution architecture.Taking the interference of the carrier-based aircraft deck layout on the weapon transportation route and precedence constraint into consideration,a mixed integer formulation is established to minimize the total objective,which is constituted of makespan,load variance and accumulative transfer time of support unit.Solution approach is developed for the model.Firstly,based on modeling the carrier aircraft parked on deck as convex obstacles,the path library of weapon transportation is constructed through visibility graph and Warshall-Floyd methods.We then propose a bi-population immune algorithm in which a population-based forward/backward scheduling technique,local search schemes and a chaotic catastrophe operator are embedded.Besides,the randomkey solution representation and serial scheduling generation scheme are adopted to conveniently obtain a better solution.The Taguchi method is additionally employed to determine key parameters of the algorithm.Finally,on a set of generated realistic instances,we demonstrate that the proposed algorithm outperforms all compared algorithms designed for similar optimization problems and can significantly improve the efficiency,and that the established model and the bi-population immune algorithm can effectively respond to the weapon support requirements of carrier-based aircraft under different sortie missions. 展开更多
关键词 Carrier-based aircraft Weapon transportation support scheduling Pickup and delivery Bi-population immune algorithm
在线阅读 下载PDF
Forecasting increasing rate of power consumption based on immune genetic algorithm combined with neural network 被引量:1
6
作者 杨淑霞 《Journal of Central South University》 SCIE EI CAS 2008年第S2期327-330,共4页
Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune... Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune genetic algorithm was applied to optimizing the weight from input layer to hidden layer, from hidden layer to output layer, and the threshold value of neuron nodes in hidden and output layers. Finally, training the related data of the increasing rate of power consumption from 1980 to 2000 in China, a nonlinear network model between the increasing rate of power consumption and influencing factors was obtained. The model was adopted to forecasting the increasing rate of power consumption from 2001 to 2005, and the average absolute error ratio of forecasting results is 13.521 8%. Compared with the ordinary neural network optimized by genetic algorithm, the results show that this method has better forecasting accuracy and stability for forecasting the increasing rate of power consumption. 展开更多
关键词 immunE GENETIC algorithm neural network power CONSUMPTION INCREASING RATE FORECAST
在线阅读 下载PDF
Immune evolutionary algorithms with domain knowledge for simultaneous localization and mapping 被引量:4
7
作者 李枚毅 蔡自兴 《Journal of Central South University of Technology》 EI 2006年第5期529-535,共7页
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de... Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms. 展开更多
关键词 immune evolutionary algorithms simultaneous localization and mapping domain knowledge
在线阅读 下载PDF
Optimization of Submarine Hydrodynamic Coefficients Based on Immune Genetic Algorithm 被引量:1
8
作者 胡坤 徐亦凡 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第3期200-205,共6页
Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations,an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations... Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations,an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations.Some hydrodynamic coefficients of high sensitivity to control and maneuver were chosen as the optimization objects in the algorithm.By using adaptive weight method to determine the weight and target function,the multi-objective optimization could be translated into single-objective optimization.For a certain kind of submarine,three typical maneuvers were chosen to be the objects of study:overshoot maneuver in horizontal plane,overshoot maneuver in vertical plane and turning circle maneuver in horizontal plane.From the results of computer simulations using primal hydrodynamic coefficient and optimized hydrodynamic coefficient,the efficiency of proposed method is proved. 展开更多
关键词 fluid mechanics SUBMARINE hydrodynamic coefficient adaptive weight immune genetic algorithm OPTIMIZATION
在线阅读 下载PDF
Optimizing neural network forecast by immune algorithm 被引量:2
9
作者 杨淑霞 李翔 +1 位作者 李宁 杨尚东 《Journal of Central South University of Technology》 EI 2006年第5期573-576,共4页
Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the dat... Considering multi-factor influence, a forecasting model was built. The structure of BP neural network was designed, and immune algorithm was applied to optimize its network structure and weight. After training the data of power demand from the year 1980 to 2005 in China, a nonlinear network model was obtained on the relationship between power demand and the factors which had impacts on it, and thus the above proposed method was verified. Meanwhile, the results were compared to those of neural network optimized by genetic algorithm. The results show that this method is superior to neural network optimized by genetic algorithm and is one of the effective ways of time series forecast. 展开更多
关键词 neural network FORECAST immune algorithm OPTIMIZATION
在线阅读 下载PDF
基于IA-VMD的浮环密封声发射信号降噪与特征提取 被引量:3
10
作者 张帅 丁俊华 +1 位作者 丁雪兴 力宁 《振动与冲击》 EI CSCD 北大核心 2024年第4期222-229,共8页
针对航空发动机浮环密封运行时,声发射信号易受外界噪声干扰,且特征信号难以提取的问题,提出一种基于免疫算法(immune algorithm, IA)和变分模态分解(variational mode decomposition, VMD)的声发射信号处理方法。首先应用免疫算法对变... 针对航空发动机浮环密封运行时,声发射信号易受外界噪声干扰,且特征信号难以提取的问题,提出一种基于免疫算法(immune algorithm, IA)和变分模态分解(variational mode decomposition, VMD)的声发射信号处理方法。首先应用免疫算法对变分模态分解中的模态数K和惩罚因子α进行优化,采用样本熵为亲和度函数,得到VMD算法中的最佳参数组合。其次,对原始信号进行分解得到若干模态分量(intrinsic mode function, IMF)并计算出各个分量的相对熵,选取差异小的分量进行重构得到降噪信号。仿真信号分析表明,IA-VMD方法可以获得最佳参数,在抗噪声干扰方面具有明显优势。最后,对浮环密封声发射信号降噪并进行特征提取,结果表明,采用IA-VMD方法能够在降噪的同时最大限度保留有效信息,获得表征浮环密封主密封面碰摩状态的声发射信号,为今后浮环密封故障诊断奠定基础。 展开更多
关键词 浮环密封 免疫算法(ia) 变分模态分解(VMD) 声发射 特征提取
在线阅读 下载PDF
Elitism-based immune genetic algorithm and its application to optimization of complex multi-modal functions 被引量:4
11
作者 谭冠政 周代明 +1 位作者 江斌 DIOUBATE Mamady I 《Journal of Central South University of Technology》 EI 2008年第6期845-852,共8页
A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody s... A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism. 展开更多
关键词 immune genetic algorithm multi-modal function optimization evolutionary computation elitist selection elitist crossover
在线阅读 下载PDF
Self-adaptive learning based immune algorithm 被引量:1
12
作者 许斌 庄毅 +1 位作者 薛羽 王洲 《Journal of Central South University》 SCIE EI CAS 2012年第4期1021-1031,共11页
A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned prc,blems with the high robustness. The SALIA algorithm ad... A self-adaptive learning based immune algorithm (SALIA) is proposed to tackle diverse optimization problems, such as complex multi-modal and ill-conditioned prc,blems with the high robustness. The SALIA algorithm adopted a mutation strategy pool which consists of four effective mutation strategies to generate new antibodies. A self-adaptive learning framework is implemented to select the mutation strategies by learning from their previous performances in generating promising solutions. Twenty-six state-of-the-art optimization problems with different characteristics, such as uni-modality, multi-modality, rotation, ill-condition, mis-scale and noise, are used to verify the validity of SALIA. Experimental results show that the novel algorithm SALIA achieves a higher universality and robustness than clonal selection algorithms (CLONALG), and the mean error index of each test function in SALIA decreases by a factor of at least 1.0×10^7 in average. 展开更多
关键词 immune algorithm multi-modal optimization evolutionary computation immtme secondary response self-adaptivelearning
在线阅读 下载PDF
Adaptive template filter method for image processing based on immune genetic algorithm 被引量:1
13
作者 谭冠政 吴建华 +1 位作者 范必双 江斌 《Journal of Central South University》 SCIE EI CAS 2010年第5期1028-1035,共8页
To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventiona... To preserve the original signal as much as possible and filter random noises as many as possible in image processing,a threshold optimization-based adaptive template filtering algorithm was proposed.Unlike conventional filters whose template shapes and coefficients were fixed,multi-templates were defined and the right template for each pixel could be matched adaptively based on local image characteristics in the proposed method.The superiority of this method was verified by former results concerning the matching experiment of actual image with the comparison of conventional filtering methods.The adaptive search ability of immune genetic algorithm with the elitist selection and elitist crossover(IGAE) was used to optimize threshold t of the transformation function,and then combined with wavelet transformation to estimate noise variance.Multi-experiments were performed to test the validity of IGAE.The results show that the filtered result of t obtained by IGAE is superior to that of t obtained by other methods,IGAE has a faster convergence speed and a higher computational efficiency compared with the canonical genetic algorithm with the elitism and the immune algorithm with the information entropy and elitism by multi-experiments. 展开更多
关键词 image characteristic template match adaptive template filter wavelet transform elitist selection elitist crossover immune genetic algorithm
在线阅读 下载PDF
Immune response-based algorithm for optimization of dynamic environments
14
作者 史旭华 钱锋 《Journal of Central South University》 SCIE EI CAS 2011年第5期1563-1571,共9页
A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,mu... A novel immune algorithm suitable for dynamic environments (AIDE) was proposed based on a biological immune response principle.The dynamic process of artificial immune response with operators such as immune cloning,multi-scale variation and gradient-based diversity was modeled.Because the immune cloning operator was derived from a stimulation and suppression effect between antibodies and antigens,a sigmoid model that can clearly describe clonal proliferation was proposed.In addition,with the introduction of multiple populations and multi-scale variation,the algorithm can well maintain the population diversity during the dynamic searching process.Unlike traditional artificial immune algorithms,which require randomly generated cells added to the current population to explore its fitness landscape,AIDE uses a gradient-based diversity operator to speed up the optimization in the dynamic environments.Several reported algorithms were compared with AIDE by using Moving Peaks Benchmarks.Preliminary experiments show that AIDE can maintain high population diversity during the search process,simultaneously can speed up the optimization.Thus,AIDE is useful for the optimization of dynamic environments. 展开更多
关键词 dynamic optimization artificial immune algorithms immune response multi-scale variation
在线阅读 下载PDF
考虑改造扩建的电动汽车充电站自适应分阶段规划方法 被引量:1
15
作者 杨楠 梁鹏程 +4 位作者 卢延明 丁力 代洲 边瑞恩 王灿 《中国电机工程学报》 北大核心 2025年第5期1716-1728,I0007,共14页
在电动汽车(electric vehicle,EV)爆发式增长背景下,如何制订出能够很好适应电动汽车规模发展的充电站(charging station,CS)规划方案,以实现CS的合理规划布局,对促进EV产业的健康发展具有重要意义。该文将规划阶段划分和充电站改造扩... 在电动汽车(electric vehicle,EV)爆发式增长背景下,如何制订出能够很好适应电动汽车规模发展的充电站(charging station,CS)规划方案,以实现CS的合理规划布局,对促进EV产业的健康发展具有重要意义。该文将规划阶段划分和充电站改造扩建作为决策手段纳入到充电站规划模型之中,提出一种考虑改造扩建的电动汽车充电站自适应分阶段规划方法。首先,考虑充电站、电网、用户的利益,以阶段总数、各阶段年限、选址、定容、改造为决策变量,以投资和排队时间综合成本最小为目标构建充电站规划模型;然后,通过考虑电动汽车的规模演化过程,基于分阶段判断条件和改造扩建决策,建立充电站自适应分阶段决策模型;最后,采用免疫遗传算法对模型进行求解。基于仿真算例的结果验证所提方法的经济性和有效性。 展开更多
关键词 电动汽车 充电站规划 自适应分阶段 改造扩建 免疫遗传算法
在线阅读 下载PDF
基于改进IGA的多品种变批量智能车间调度
16
作者 刘晋飞 刘乙涵 +1 位作者 陈明 黄华 《现代制造工程》 北大核心 2025年第4期1-10,共10页
针对多品种、变批量的高复杂度智能制造场景,频繁更换刀具、夹具及工装等情况造成的实际生产调度和理论生产调度脱节的问题,定义了两个参量,即机器准备时间(Machine Preparation Duration,MPD)和机器加工系数(Machine Processing Coeffi... 针对多品种、变批量的高复杂度智能制造场景,频繁更换刀具、夹具及工装等情况造成的实际生产调度和理论生产调度脱节的问题,定义了两个参量,即机器准备时间(Machine Preparation Duration,MPD)和机器加工系数(Machine Processing Coefficient,MPC),以最小化最大完工时间、机器总时间负荷和机器总准备时间为目标函数,建立了引入MPC参数的多品种、变批量智能车间调度数学模型;设计了融合非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-Ⅱ,NSGA-Ⅱ)和免疫遗传算法(Immune Genetic Algorithm,IGA)的非支配免疫遗传算法(Non-dominated Sorting Immune Genetic Algorithm-Ⅱ,NSIGA-Ⅱ)来求解此类问题。该算法采用多种方式进行初始化,提出了一种综合考虑非支配排序和目标函数值大小的得分策略来筛选优秀个体,同时为了提高种群的多样性,引入种群分层和自适应交叉突变的策略。最后,通过多组对比实验验证了该算法的有效性以及在探索最优解时具有稳定性好、解质量高等优点。 展开更多
关键词 机器准备时间 非支配排序算法 免疫遗传算法 智能车间调度
在线阅读 下载PDF
考虑交通拥堵的冷链配送路径动态优化
17
作者 曹菁菁 魏杰 +3 位作者 雷阿会 韩鹏 冯子立 王梦简 《计算机应用研究》 北大核心 2025年第8期2364-2373,共10页
针对交通流的不确定性和难预知性导致的交通拥堵,从而影响冷链配送效率的问题,提出考虑交通拥堵的带时间窗的冷链车辆路径问题,建立了0-1整数规划模型;然后,利用变交叉操作和自适应扰动因子对免疫遗传算法(IGA)进行改进,提出基于变交叉... 针对交通流的不确定性和难预知性导致的交通拥堵,从而影响冷链配送效率的问题,提出考虑交通拥堵的带时间窗的冷链车辆路径问题,建立了0-1整数规划模型;然后,利用变交叉操作和自适应扰动因子对免疫遗传算法(IGA)进行改进,提出基于变交叉下降的免疫遗传算法(VCD-IGA);最后,利用某生鲜企业配送过程中的实际配送数据和交通流数据进行实验。实验通过自主搭建的信息系统进行数据交互,并通过VCD-IGA对配送路径进行实时动态优化。实验表明,相较于静态决策,提出的动态决策使得配送总成本降低29.6%,平均物流服务水平提升18%。 展开更多
关键词 冷链配送 免疫遗传算法 动态决策 交通拥堵
在线阅读 下载PDF
基于改进免疫遗传算法的海铁转运设备作业调度优化研究
18
作者 黄鹏飞 谈方娇 +2 位作者 王浩 江瑀越 蔡锦汾 《重庆交通大学学报(自然科学版)》 北大核心 2025年第6期97-107,共11页
集装箱转运作为连接海运与铁路运输的关键环节,其效率直接影响到整个物流链的顺畅运行。缩短集装箱在港停留时间、优化设备作业顺序以及提升转运效率对于实现高效的海铁联运至关重要。但现有研究往往忽视了对集装箱完整转运流程及设备... 集装箱转运作为连接海运与铁路运输的关键环节,其效率直接影响到整个物流链的顺畅运行。缩短集装箱在港停留时间、优化设备作业顺序以及提升转运效率对于实现高效的海铁联运至关重要。但现有研究往往忽视了对集装箱完整转运流程及设备空载时间因素的考虑。鉴于此,针对从船舶卸载至堆场再转至铁路线的全过程,构建了以最小化总作业完成时间为目标函数的数学模型,旨在解决实际存在的连续作业约束、空载等待时间和具体操作位置等问题;通过采用改进后的免疫遗传算法(特别是引入克隆抗体选择机制和自适应参数调整策略)来求解该问题;经过一系列优化对比证明了该方法能更有效地找到最优解或近似最优解,即最短的总作业完成时间及其对应的设备调度方案。研究成果不仅有助于显著减少港口内集装箱的处理周期,还能促进节能减排。 展开更多
关键词 交通运输工程 海铁转运 调度优化 改进免疫遗传算法
在线阅读 下载PDF
基于IA-BP神经网络的UWB室内定位系统 被引量:14
19
作者 李勇 柳建 《电子测量技术》 2019年第5期109-112,共4页
复杂的室内环境给定位系统带来非视距误差和多径干扰,消除或降低误差成为超宽带(UWB)室内定位研究的热点。提出一种基于IA-BP神经网络的UWB室内定位方法,将BP神经网络训练的误差值作为免疫算法计算亲和度的抗原,通过免疫算法寻得BP神经... 复杂的室内环境给定位系统带来非视距误差和多径干扰,消除或降低误差成为超宽带(UWB)室内定位研究的热点。提出一种基于IA-BP神经网络的UWB室内定位方法,将BP神经网络训练的误差值作为免疫算法计算亲和度的抗原,通过免疫算法寻得BP神经网络的最优权值和阈值,避免BP神经网络收敛速度较慢和容易陷入局部最优值的问题,达到定位误差较小的目的。仿真实验结果表明,IA-BP神经网络训练100个样本输出的最大归一化误差不超过0.02,以3个锚点构成的定位场景中,待定位节点的仿真输出轨迹与实际运动轨迹基本吻合。 展开更多
关键词 超宽带 室内定位 ia-BP神经网络 权值和阈值 定位误差
在线阅读 下载PDF
IIoT环境下基于聚类的工作流多雾协同调度算法 被引量:1
20
作者 吴宏伟 江凌云 陈海峰 《计算机工程与设计》 北大核心 2025年第1期52-59,共8页
为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中... 为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中的任务进行聚类,基于聚类结果,在多个雾服务器之间使用改进的免疫粒子群优化算法进行任务调度。实验结果表明,该算法相比其它一些传统的调度算法在完工时间、成本、负载均衡方面都有一定提升。 展开更多
关键词 工业物联网 聚类 工作流 二分K均值算法 多雾 免疫粒子群优化算法 调度算法
在线阅读 下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部