期刊文献+
共找到75,329篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-objective optimization of grinding process parameters for improving gear machining precision 被引量:1
1
作者 YOU Tong-fei HAN Jiang +4 位作者 TIAN Xiao-qing TANG Jian-ping LU Yi-guo LI Guang-hui XIA Lian 《Journal of Central South University》 2025年第2期538-551,共14页
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus... The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods. 展开更多
关键词 worm wheel gear grinding machine gear machining precision machining process parameters multi objective optimization
在线阅读 下载PDF
MPMS-SGH:Multi-parameter Multi-step Prediction Model for Solar Greenhouse
2
作者 JI Ronghua WANG Wenxuan +2 位作者 AN Dong QI Shaotian LIU Jincun 《农业机械学报》 北大核心 2025年第7期265-278,共14页
Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parame... Accurately predicting environmental parameters in solar greenhouses is crucial for achieving precise environmental control.In solar greenhouses,temperature,humidity,and light intensity are crucial environmental parameters.The monitoring platform collected data on the internal environment of the solar greenhouse for one year,including temperature,humidity,and light intensity.Additionally,meteorological data,comprising outdoor temperature,outdoor humidity,and outdoor light intensity,was gathered during the same time frame.The characteristics and interrelationships among these parameters were investigated by a thorough analysis.The analysis revealed that environmental parameters in solar greenhouses displayed characteristics such as temporal variability,non-linearity,and periodicity.These parameters exhibited complex coupling relationships.Notably,these characteristics and coupling relationships exhibited pronounced seasonal variations.The multi-parameter multi-step prediction model for solar greenhouse(MPMS-SGH)was introduced,aiming to accurately predict three key greenhouse environmental parameters,and the model had certain seasonal adaptability.MPMS-SGH was structured with multiple layers,including an input layer,a preprocessing layer,a feature extraction layer,and a prediction layer.The input layer was used to generate the original sequence matrix,which included indoor temperature,indoor humidity,indoor light intensity,as well as outdoor temperature and outdoor light intensity.Then the preprocessing layer normalized,decomposed,and positionally encoded the original sequence matrix.In the feature extraction layer,the time attention mechanism and frequency attention mechanism were used to extract features from the trend component and the seasonal component,respectively.Finally,the prediction layer used a multi-layer perceptron to perform multi-step prediction of indoor environmental parameters(i.e.temperature,humidity,and light intensity).The parameter selection experiment evaluated the predictive performance of MPMS-SGH on input and output sequences of different lengths.The results indicated that with a constant output sequence length,the prediction accuracy of MPMS-SGH was firstly increased and then decreased with the increase of input sequence length.Specifically,when the input sequence length was 100,MPMS-SGH had the highest prediction accuracy,with RMSE of 0.22℃,0.28%,and 250lx for temperature,humidity,and light intensity,respectively.When the length of the input sequence remained constant,as the length of the output sequence increased,the accuracy of the model in predicting the three environmental parameters was continuously decreased.When the length of the output sequence exceeded 45,the prediction accuracy of MPMS-SGH was significantly decreased.In order to achieve the best balance between model size and performance,the input sequence length of MPMS-SGH was set to be 100,while the output sequence length was set to be 35.To assess MPMS-SGH’s performance,comparative experiments with four prediction models were conducted:SVR,STL-SVR,LSTM,and STL-LSTM.The results demonstrated that MPMS-SGH surpassed all other models,achieving RMSE of 0.15℃for temperature,0.38%for humidity,and 260lx for light intensity.Additionally,sequence decomposition can contribute to enhancing MPMS-SGH’s prediction performance.To further evaluate MPMS-SGH’s capabilities,its prediction accuracy was tested across different seasons for greenhouse environmental parameters.MPMS-SGH had the highest accuracy in predicting indoor temperature and the lowest accuracy in predicting humidity.And the accuracy of MPMS-SGH in predicting environmental parameters of the solar greenhouse fluctuated with seasons.MPMS-SGH had the highest accuracy in predicting the temperature inside the greenhouse on sunny days in spring(R^(2)=0.91),the highest accuracy in predicting the humidity inside the greenhouse on sunny days in winter(R^(2)=0.83),and the highest accuracy in predicting the light intensity inside the greenhouse on cloudy days in autumm(R^(2)=0.89).MPMS-SGH had the lowest accuracy in predicting three environmental parameters in a sunny summer greenhouse. 展开更多
关键词 solar greenhouse environmental parameter time series multi-step prediction
在线阅读 下载PDF
Learning the parameters of a class of stochastic Lotka-Volterra systems with neural networks
3
作者 WANG Zhanpeng WANG Lijin 《中国科学院大学学报(中英文)》 北大核心 2025年第1期20-25,共6页
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f... In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method. 展开更多
关键词 stochastic Lotka-Volterra systems neural networks Euler-Maruyama scheme parameter estimation
在线阅读 下载PDF
Experimental study on the TNT equivalence for blast parameters in a confined space
4
作者 Yu-lei Zhang Yan Liu +5 位作者 Pu Song Hao-zhe Liang Di Yang Lu Han Hai-yan Jiang Kai Zhong 《Defence Technology(防务技术)》 2025年第6期238-249,共12页
The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy... The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy and limited application range,the use of TNT equivalence for predicting explosion parameters in a confined space is rare.Compared with explosions in free fields,the process of explosive energy release in a confined space is closely related to various factors such as oxygen balance,combustible components content,and surrounding oxygen content.Studies have shown that in a confined space,negative oxygen balance explosives react with surrounding oxygen during afterburning,resulting in additional energy release and enhanced blast effects.The mechanism of energy release during afterburning is highly complex,making it challenging to determine the TNT equivalence for blast effects in a confined space.Therefore,this remains an active area of research.In this study,internal blast experiments were conducted using TNT and three other explosives under both air and N_2(Nitrogen)conditions to obtain explosion parameters including blast wave overpressure,quasi-static pressure,and temperature.The influences of oxygen balance and external oxygen content on energy release are analyzed.The author proposes principles for determining TNT equivalence for internal explosions while verifying the accuracy of obtained blast parameters through calculations based on TNT equivalence.These findings can serve as references for predicting blast performance. 展开更多
关键词 Explosion in confined space AFTERBURNING Oxygen balance Blast parameters TNT equivalence
在线阅读 下载PDF
A methodology to simulate interior and intermediate ballistics with dynamic mesh technique and lumped parameter code
5
作者 G.Guermonprez T.Gaillard +2 位作者 J.Dupays J.Anthoine R.Demarthon 《Defence Technology(防务技术)》 2025年第7期447-464,共18页
The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.F... The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.First,the methodology is introduced with the development of an interior ballistics(IB)lumped parameter code(LPC),integrating an original image processing method for calculating the specific regression of propellant grains that compose the gun propellant.The ONERA CFD code CEDRE,equipped with a Dynamic Mesh Technique(DMT),is then used in conjunction with the developed LPC to build a dedicated methodology to calculate IB.First results obtained on the AGARD gun and 40 mm gun test cases are in a good agreement with the existing literature.CEDRE is also used to calculate inter-mediate ballistics(first milliseconds of free flight of the projectile)with a multispecies and reactive approach either starting from the gun muzzle plane or directly following IB.In the latter case,an inverse problem involving a Latin hypercube sampling method is used to find a gun propellant configuration that allows the projectile to reach a given exit velocity and base pressure when IB ends.The methodology developed in this work makes it possible to study the flame front of the intermediate flash and depressurization that occurs in a base bleed(BB)channel at the gun muzzle.Average pressure variations in the BB channel during depressurization are in good agreement with literature. 展开更多
关键词 Intermediate ballistics Interior ballistics(IB) Lumped parameter code(LPC) Form function Dynamic mesh
在线阅读 下载PDF
Incoherence parameter estimation and multiband fusion based on the novel structure-enhanced spatial spectrum algorithm
6
作者 JIANG Libing ZHENG Shuyu +2 位作者 YANG Qingwei ZHANG Xiaokuan WANG Zhuang 《Journal of Systems Engineering and Electronics》 2025年第4期867-879,共13页
In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes fu... In order to obtain better inverse synthetic aperture radar(ISAR)image,a novel structure-enhanced spatial spectrum is proposed for estimating the incoherence parameters and fusing multiband.The proposed method takes full advantage of the original electromagnetic scattering data and its conjugated form by combining them with the novel covariance matrices.To analyse the superiority of the modified algorithm,the mathematical expression of equivalent signal to noise ratio(SNR)is derived,which can validate our proposed algorithm theoretically.In addition,compared with the conventional matrix pencil(MP)algorithm and the conventional root-multiple signal classification(Root-MUSIC)algorithm,the proposed algorithm has better parameter estimation performance and more accurate multiband fusion results at the same SNR situations.Validity and effectiveness of the proposed algorithm is demonstrated by simulation data and real radar data. 展开更多
关键词 multiband fusion incoherence parameter estimation matrix pencil(MP) root-multiple signal classification(Root-MUSIC) covariance matrix.
在线阅读 下载PDF
Dual CG-IG distribution model for sea clutter and its parameter correction method
7
作者 LI Zhen HE Huafeng +3 位作者 ZHOU Tao ZHANG Qi HAN Xiaofei YOU Yongquan 《Journal of Systems Engineering and Electronics》 2025年第5期1177-1187,共11页
Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characterist... Accurate modeling and parameter estimation of sea clutter are fundamental for effective sea surface target detection.With the improvement of radar resolution,sea clutter exhibits a pronounced heavy-tailed characteristic,rendering traditional distribution models and parameter estimation methods less effective.To address this,this paper proposes a dual compound-Gaussian model with inverse Gaussian texture(CG-IG)distribution model and combines it with an improved Adam algorithm to introduce a method for parameter correction.This method effectively fits sea clutter with heavy-tailed characteristics.Experiments with real measured sea clutter data show that the dual CGIG distribution model,after parameter correction,accurately describes the heavy-tailed phenomenon in sea clutter amplitude distribution,and the overall mean square error of the distribution is reduced. 展开更多
关键词 compound-Gaussian model with inverse Gaussian texture(CG-IG)distribution sea clutter Adam algorithm parameter estimation
在线阅读 下载PDF
Quaternion-Based Adaptive Trajectory Tracking Control of a Rotor-Missile with Unknown Parameters Identification
8
作者 Jie Zhao Zhongjiao Shi +1 位作者 Yuchen Wang Wei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期375-386,共12页
This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta... This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations. 展开更多
关键词 Rotor-missile Adaptive control parameter identification Quaternion control
在线阅读 下载PDF
Coarse-fine joint target parameter estimation method based on AN-RSC in OFDM passive radar
9
作者 WANG Chujun WAN Xianrong +1 位作者 YI Jianxin CHENG Feng 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期339-349,共11页
In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to... In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation. 展开更多
关键词 passive radar orthogonal frequency division multiplexing(OFDM)signal atomic norm(AN) parameter estimation
在线阅读 下载PDF
Artificial Intelligence Based Meteorological Parameter Forecasting for Optimizing Response of Nuclear Emergency Decision Support System
10
作者 BILAL Ahmed Khan HASEEB ur Rehman +5 位作者 QAISAR Nadeem MUHAMMAD Ahmad Naveed Qureshi JAWARIA Ahad MUHAMMAD Naveed Akhtar AMJAD Farooq MASROOR Ahmad 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第10期2068-2076,共9页
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat... This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies. 展开更多
关键词 prediction of meteorological parameters weather research and forecasting model artificial neural networks nuclear emergency support system
在线阅读 下载PDF
A frequency domain estimation and compensation method for system synchronization parameters of distributed-HFSWR
11
作者 WANG Hongyong SUO Ying +3 位作者 DENG Weibo WU Xiaochuan BAI Yang ZHANG Xin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1084-1097,共14页
To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on th... To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper. 展开更多
关键词 distributed high-frequency surface wave radar(distributed-HFSWR) direct wave synchronization error curve fitting system synchronization parameter compensation
在线阅读 下载PDF
Time-varying parameters estimation with adaptive neural network EKF for missile-dual control system
12
作者 YUAN Yuqi ZHOU Di +1 位作者 LI Junlong LOU Chaofei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期451-462,共12页
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST... In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model. 展开更多
关键词 long-short-term memory(LSTM)neural network extended Kalman filter(EKF) rolling training time-varying parameters estimation missile dual control system
在线阅读 下载PDF
复合材料模压成型工艺参数优化方法 被引量:2
13
作者 杨泽青 杜竞旋 +2 位作者 胡宁 张延星 金一 《河北大学学报(自然科学版)》 北大核心 2025年第1期104-112,共9页
针对传统模压成型工艺能耗高、生产效率低、产品质量不稳定等问题,提出一种基于自适应遗传算法的模压成型工艺优化方法,用来优化模压成型过程中保温时间、模压压力以及温度等参数,该方法将实验得到的工艺数据作为输入层神经元,以成型质... 针对传统模压成型工艺能耗高、生产效率低、产品质量不稳定等问题,提出一种基于自适应遗传算法的模压成型工艺优化方法,用来优化模压成型过程中保温时间、模压压力以及温度等参数,该方法将实验得到的工艺数据作为输入层神经元,以成型质量翘曲变形量作为输出层神经元,构建BP神经网络,由此得到翘曲变形与模压压力、保温时间、温度之间的函数关系,然后运用自适应遗传算法对多工艺参数进行优化,经过二进制编码、选择、交叉、变异等步骤,最后解码得到优化后的结果.研究结果表明,自适应遗传算法能够对模压成型过程中因保温时间、模压压力以及温度三者不平衡引起的翘曲变形量有很好的改善效果,能提高产品成型质量. 展开更多
关键词 模压成型 工艺参数 多参数优化 自适应遗传算法
在线阅读 下载PDF
冰固持条件下切削参数对不锈钢铣削力及平面度影响的试验研究 被引量:2
14
作者 董庆运 陈光军 +1 位作者 王飞 谭斌 《工具技术》 北大核心 2025年第2期18-22,共5页
316不锈钢铣削过程中,存在发热严重、易粘刀、零件表面质量差等问题,使其在高精密场合的应用受到限制。利用冰固持装夹系统实现工件的温度控制,减小已加工区域和未加工区域的温度差影响,并采用正交试验法进行低温铣削试验研究。通过极... 316不锈钢铣削过程中,存在发热严重、易粘刀、零件表面质量差等问题,使其在高精密场合的应用受到限制。利用冰固持装夹系统实现工件的温度控制,减小已加工区域和未加工区域的温度差影响,并采用正交试验法进行低温铣削试验研究。通过极差分析和方差分析法对试验数据进行分析,结果表明:切削参数对切削力的影响程度由大到小依次为:主轴转速n、切削深度a_(p)、进给速度v_(f);对平面度的影响程度由大到小依次为:切削深度a_(p)、主轴转速n、进给速度v_(f),并得到试验参数范围内的切削力和平面度的最佳参数组合。 展开更多
关键词 冰固持 不锈钢 切削参数 切削力 平面度
在线阅读 下载PDF
基于离散元法的长江中游地区水田壤土参数标定 被引量:2
15
作者 张超 崔履钰 +2 位作者 石涛 杨力 张道德 《农机化研究》 北大核心 2025年第7期35-43,共9页
为研究农业机械与水田壤土间的相互作用,需获取水田壤土的物理及接触参数。结合物理堆积试验,以休止角作为响应值,采用离散元法(DEM)并选取Hertz-Mindlin with JKR(Johnson-Kendall-Roberts)接触模型对长江中游地区水田壤土展开参数标... 为研究农业机械与水田壤土间的相互作用,需获取水田壤土的物理及接触参数。结合物理堆积试验,以休止角作为响应值,采用离散元法(DEM)并选取Hertz-Mindlin with JKR(Johnson-Kendall-Roberts)接触模型对长江中游地区水田壤土展开参数标定研究。首先,通过物理堆积试验获取了壤土休止角(AoR)与含水率间的定量关系,由不同含水率土壤的堆积结果筛分出4种代表性堆积形态,由于水田壤土堆积体轮廓外形比较独特,因此仅对其左右两侧轮廓采用三次多项式进行局部拟合,计算其休止角。以长江中游地区水田壤土成因和预试验为依据来确定其离散元模型中9个参数的高低水平值,通过Plackett-Burman试验设计进行方差分析,发现壤土剪切模量、壤土间动摩擦因数、壤土与不锈钢间静摩擦因数和JKR表面能对AoR影响明显。然后,采用基于响应面法(RSM)原理的Box-Behnken试验设计(BBD)建立了AoR与4个显著性参数间的二次多项式回归模型。依据二次多项式回归模型对目标响应进行预测,得到最优参数组合。以此为基础对壤土AoR进行离散元仿真,AoR数值计算结果(45.4°)与试验结果(44.6°)相对误差为1.79%。最后,选取含水率分别为44.4%、48.7%的壤土进行堆积角仿真模拟,计算结果与堆积试验相对误差分别为2.8%、7.14%。研究表明:回归模型可以根据壤土含水率或AoR预测长江中游地区水田壤土的相关本征参数和接触参数。 展开更多
关键词 水田壤土 离散元法 参数标定 休止角
在线阅读 下载PDF
基于改进蜉蝣算法的永磁同步电机参数辨识 被引量:1
16
作者 彭思齐 郭旦 +2 位作者 李伟俊 彭鸿羽 李福 《传感器与微系统》 北大核心 2025年第6期153-156,160,共5页
针对一类智能优化算法在永磁同步电机(PMSM)参数辨识中存在种群多样性较差、易于陷入局部最优导致参数辨识结果精度不高的问题,提出一种改进蜉蝣算法(IMA)用于PMSM参数辨识。通过SPM混沌映射初始化种群,提高种群多样性,在雄性蜉蝣位置... 针对一类智能优化算法在永磁同步电机(PMSM)参数辨识中存在种群多样性较差、易于陷入局部最优导致参数辨识结果精度不高的问题,提出一种改进蜉蝣算法(IMA)用于PMSM参数辨识。通过SPM混沌映射初始化种群,提高种群多样性,在雄性蜉蝣位置更新部分中,根据个体适应度值分别采用柯西变异和高斯变异进行位置更新,增强算法全局搜索能力。最后应用混沌折射反向学习策略对全局最优位置进行更新,加强算法跳出局部最优的能力。基于6个基准测试函数对IMA性能进行评估并在仿真实验中与其他对比算法的参数辨识结果进行对比。结果表明:IMA收敛速度和收敛精度均有较大提升,且参数辨识结果快速、准确。 展开更多
关键词 永磁同步电机 改进蜉蝣算法 参数辨识
在线阅读 下载PDF
适应性引导的花朵授粉算法 被引量:1
17
作者 郭肇禄 石涛 +1 位作者 杨火根 张文生 《陕西师范大学学报(自然科学版)》 北大核心 2025年第1期114-130,共17页
针对传统花朵授粉算法在求解一些复杂优化问题时存在着开采能力不足的缺点,提出了一种适应性引导的花朵授粉算法(AGFPA)。所提算法设计了环优策略和向优策略相结合的适应性引导机制,适应性地控制最优个体对种群演化的引导作用,既增强算... 针对传统花朵授粉算法在求解一些复杂优化问题时存在着开采能力不足的缺点,提出了一种适应性引导的花朵授粉算法(AGFPA)。所提算法设计了环优策略和向优策略相结合的适应性引导机制,适应性地控制最优个体对种群演化的引导作用,既增强算法的开采能力,又尽可能维持种群的多样性。适应性引导机制中的环优策略在最优个体的周围执行导向开采,使得种群集中搜索最优个体的邻域;而向优策略利用最优个体的引导进行定向搜索,使得搜索有向地覆盖较广的未知区域。此外,设计了适应性参数控制策略,根据不同演化阶段的需求,调整全局授粉转换概率和最优引导的步长因子,从而维持开采能力和勘探能力的平衡。为检验所提算法的性能,在群智能研究领域中常用的18个基准测试函数上进行了策略有效性分析,并将AGFPA分别与几种改进的FPA和PSO算法进行比较;同时,应用AGFPA估计发酵动力学参数。实验结果表明,在求解大多数单峰、多峰和复杂函数时,AGFPA均具有较为优秀的寻优能力;在发酵动力学参数估计应用中,AGFPA也具有一定的优势。 展开更多
关键词 花朵授粉算法 适应性引导机制 环优策略 向优策略 适应性参数控制策略 发酵动力学参数
在线阅读 下载PDF
基于动态更新的钻井参数实时优化方法 被引量:3
18
作者 宋先知 张瑞 +4 位作者 祝兆鹏 李根生 效世杰 潘涛 颜志 《钻采工艺》 北大核心 2025年第1期21-28,共8页
当前,钻井参数的优化主要依赖于钻井专家经验或者传统预测与优化模型,这些方法在面对复杂波动环境下的钻井施工精细指导具有较大的局限性,尤其是随着人工智能在钻井系统中的发展,对智能模型的稳定性、实时性和参数优化随机性方面具有限... 当前,钻井参数的优化主要依赖于钻井专家经验或者传统预测与优化模型,这些方法在面对复杂波动环境下的钻井施工精细指导具有较大的局限性,尤其是随着人工智能在钻井系统中的发展,对智能模型的稳定性、实时性和参数优化随机性方面具有限制。针对上述问题,文章提出了一种动态更新下的钻井参数实时优化方法,并研发了钻井参数智能优化系统。该方法考虑了钻井参数与多个响应参数的动态关联,建立了扭矩智能预测模型、机械钻速智能预测模型和机械比能计算模型;其次,基于现场实时数据流和模型实时更新机制,实现了扭矩、机械钻速和机械比能的动态智能表征;最后,基于平稳提速策略设定提速目标,利用改进的鲸鱼优化算法,综合考虑参数波动和能量损耗进行最优方案决策,实现钻井参数实时优化和平稳有效提速。现场应用表明:机械钻速实时预测具有较高精度,有效满足钻井现场实时需求;且平稳提速策略下的优化效果可观,关键层段平均提速可达30%,机械比能降低15%;此外,通过量评价优化后的钻井参数,该提速策略下的参数均值方差波动较小,可减小井下复杂工况发生概率,更符合现场钻井工艺,具有良好应用前景。 展开更多
关键词 机械钻速 动态更新 智能表征 参数优化 最优决策
在线阅读 下载PDF
颈部按摩机器人设计及优化研究 被引量:1
19
作者 吴锋锋 张社红 +1 位作者 徐艳 宁萌 《机械设计与制造》 北大核心 2025年第1期325-330,共6页
针对当前颈椎按摩的需求,基于中医按摩理论设计了一种颈部按摩机器人。首先基于仿生学进行机器人构型与尺度设计,使用Solidworks建立三维模型。为提高机器人的按摩性能,使用DH参数建立机器人的正、逆运动学模型,并通过数值算例验证理论... 针对当前颈椎按摩的需求,基于中医按摩理论设计了一种颈部按摩机器人。首先基于仿生学进行机器人构型与尺度设计,使用Solidworks建立三维模型。为提高机器人的按摩性能,使用DH参数建立机器人的正、逆运动学模型,并通过数值算例验证理论模型的准确性。其次建立机器人在捏拿及滚揉两种模式下的工作空间多目标函数,使用改进蚁群算法对机器人的连杆长度和轨迹方程进行优化,以增大按摩机器人的颈部按摩范围,提高不同人群对机器人不同按摩力度的适应性。最后通过原理样机的制作和实验平台的搭建对理论模型进行验证,并通过志愿者在一定时间按摩后的主观感受评价证明了机器人设计的合理性。 展开更多
关键词 颈部按摩 机器人 运动学 参数优化 实验研究
在线阅读 下载PDF
基于三维点云的黄瓜叶片分割与表型参数提取方法 被引量:1
20
作者 王纪章 姚承志 +2 位作者 周静 黄志刚 陈勇明 《农业机械学报》 北大核心 2025年第3期354-362,共9页
自动获取植株冠层表型形状对黄瓜育种和科学栽培至关重要。由于当前三维点云处理技术难以在黄瓜植株点云上对茎叶进行有效分离,分割准确率和效率较低。本文提出了一种改进的区域生长分割算法,并对分割后叶片进行表型提取。首先通过深度... 自动获取植株冠层表型形状对黄瓜育种和科学栽培至关重要。由于当前三维点云处理技术难以在黄瓜植株点云上对茎叶进行有效分离,分割准确率和效率较低。本文提出了一种改进的区域生长分割算法,并对分割后叶片进行表型提取。首先通过深度相机从4个角度采集黄瓜点云数据,在统计滤波和颜色滤波去除背景噪声以及离群点的基础上,基于旋转轴和广义最近点迭代(Generalized nearest point iterative,GICP)算法对点云进行配准获取完整黄瓜植株点云;使用体素和移动最小二乘算法(Moving lest squares,MLS)对区域生长算法进行改进,实现茎叶分离与叶片分割;分割后叶片点云自动提取叶片数量、叶面积、叶长、叶宽、叶周长表型参数。实验结果表明,与传统区域生长算法相比,改进区域生长算法可以精准地分割出单个叶片,对移栽15 d的准确率平均提升12.5个百分点,对移栽60 d的准确率平均提升22.5个百分点。叶面积、叶长、叶宽、叶周长4个参数与真实测量值相比决定系数R^(2)分别为0.96、0.93、0.93、0.94,均方根误差(RMSE)分别为12.69 cm^(2)、0.93 cm、0.98 cm、2.27 cm。本文提出的方法能够从单株黄瓜点云中高效地分割出单个叶片点云,并准确地计算相关表型性状,为温室黄瓜高通量自动化表型测量提供有力的技术支持。 展开更多
关键词 黄瓜叶片 三维点云 表型参数 分割
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部