The icing characteristics of supercooled large droplet(SLD)impacting carbon fiber-reinforced composites(CFRCs)remain poorly understood,hindering the enhancement of ice protection capabilities and the certification of ...The icing characteristics of supercooled large droplet(SLD)impacting carbon fiber-reinforced composites(CFRCs)remain poorly understood,hindering the enhancement of ice protection capabilities and the certification of ice-accreted composite aircraft.The paper systematically investigates the effects of the supercooling degree,the surface temperature,and the impact velocity on the ice accretion behavior of SLDs impacting carbon fiber-reinforced epoxy composite surfaces.To address the ice-prone nature of CFRCs,nanoparticle-modified anti-icing coatings are developed,and the icing characteristics of SLD-impacted modified carbon fiber-reinforced epoxy composite surfaces are analyzed.Results demonstrate that surface-modified carbon fiber-reinforced epoxy composite exhibits significantly delayed ice formation.Under conditions of droplet temperature(−15℃)and surface temperature(−18℃),the icing time of hydrophobic-modified CFRCs was delayed by over 1100 ms,representing a 5.4-fold improvement compared to the unmodified carbon fiber-reinforced epoxy composite.展开更多
This numerical simulation investigates the two⁃phase flow under the condition of supercooled large droplets impinging on the aircraft surface.Based on Eulerian framework,a method for calculating supercooled water drop...This numerical simulation investigates the two⁃phase flow under the condition of supercooled large droplets impinging on the aircraft surface.Based on Eulerian framework,a method for calculating supercooled water droplet impingement characteristics is established.Then,considering the deformation and breaking effects during the movement,this method is extended to calculate the impingement characteristics of supercooled large droplets,as well as the bouncing and splashing effects during impingement.The impingement characteristics of supercooled large droplets is then investigated by this method.The results demonstrate that the deformation and breaking effects of supercooled large droplets have negligible influence on the impingement characteristics under the experimental conditions of this paper.In addition,the results of the impingement range and collection efficiency decrease when considering the bouncing and splashing effects.The bouncing effect mainly affects the mass loss near the impingement limits,while the splashing effect influences the result around the stagnation point.This investigation is beneficial for the analysis of aircraft icing and the design of anti⁃icing system with supercooled large droplet conditions.展开更多
近年来全球极端低温天气频发,严重影响了茶树的产量和品质。ICE(Inducer of CBF expression)基因家族主要参与植物的低温胁迫响应,但在茶树领域中的相关研究还不够全面。本研究从茶树基因组中鉴定出51个茶树CsICEs基因,对其理化性质、...近年来全球极端低温天气频发,严重影响了茶树的产量和品质。ICE(Inducer of CBF expression)基因家族主要参与植物的低温胁迫响应,但在茶树领域中的相关研究还不够全面。本研究从茶树基因组中鉴定出51个茶树CsICEs基因,对其理化性质、基因结构和启动子顺式作用元件展开生物信息学分析。茶树CsICEs基因的启动子区域富含光响应、植物激素、生长发育及非生物胁迫相关顺式作用元件,其可能参与多种逆境胁迫响应。转录组分析和RT-qPCR验证结果发现,低温下CsICE43基因的表达量上升了4.24倍,其可能与茶树低温响应相关。以茶树品种‘保靖黄金茶1号’的cDNA为模板,克隆获得了CsICE43基因,其在不同组织中的表达模式存在差异,在顶芽和嫩叶中特异性高表达。蛋白氨基酸序列和系统进化树分析表明,CsICE43基因包含与ICE家族其他成员一致的S-rich、bHLH、ACT等保守结构域,且与毛花猕猴桃(Actinidiaeriantha)的亲缘关系较近。在STRING在线网站中以拟南芥AtICEs为模型,推测茶树CsICE43蛋白与HOS1、MYB15、DREB1/2存在潜在的互作关系。亚细胞定位试验表明CsICE43定位于细胞核,与跨膜结构分析结果一致。综上所述,本研究发现CsICE43基因可能与茶树低温响应关联,为深入挖掘其基因功能与抗寒分子机理提供了一定的理论基础。展开更多
Existing icing detection technologies face challenges when applied to small and medium-sized aircraft,especially electric vertical take-off and landing(eVTOL)aircraft that meet the needs of low-altitude economic devel...Existing icing detection technologies face challenges when applied to small and medium-sized aircraft,especially electric vertical take-off and landing(eVTOL)aircraft that meet the needs of low-altitude economic development.This study proposes a data-driven icing detection method based on rotor performance evolution.Through dry-air baseline tests and dynamic icing comparative experiments(wind speed 0—30 m/s,rotational speed 0—3000 r/min,collective pitch 0°—8°)of a 0.6 m rotor in the FL-61 icing wind tunnel,a multi-source heterogeneous dataset containing motion parameters,aerodynamic parameters,and icing state identifiers is constructed.An innovative signal processing architecture combining adaptive Kalman filtering and moving average cascading is adopted.And a comparative study is conducted on the performance of support vector machine(SVM),multilayer perceptron(MLP),and random forest(RF)algorithms,achieving real-time identification of icing states in rotating components.Experimental results demonstrate that the method exhibits a minimum detection latency of 6.9 s and 96%overall accuracy in reserved test cases,featuring low-latency and low false-alarm,providing a sensor-free lightweight solution for light/vertical takeoff and landing aircraft.展开更多
The electro⁃thermal anti/de-icing systems have high heating efficiency and relatively simple structures,marking them as a key development direction for future icing protection.Existing simulation algorithms for electr...The electro⁃thermal anti/de-icing systems have high heating efficiency and relatively simple structures,marking them as a key development direction for future icing protection.Existing simulation algorithms for electrothermal de-icing seldom delve into comprehensive ice accretion-melting-deicing models that account for ice shedding.Therefore,the detachment behavior of ice layers during the heating process requires in-depth research and discussion.This paper physically models the phenomenon of ice shedding,incorporates the detachment behavior of ice layers during heating,improves the existing mathematical model for electro-thermal de-icing calculations,establishes an ice accretion-melting-deicing model for electro-thermal de-icing systems,and conducts numerical simulation,verification and optimization analysis of electro-thermal de-icing considering ice shedding.Through multi-condition de-icing numerical simulations of a specific wing model,it is found that ambient temperature can serve as a factor for adapting the electro heating anti/de-icing strategy to the environment.An optimization of heating heat flux density and heating/cooling time is conducted for the wing de-icing control law under the calculated conditions.The improved electrothermal de-icing model and algorithm developed in this paper provide solid technical support for the design of electrothermal de-icing systems.展开更多
This study addresses the issue of spray icing on the air intake grilles of ship power systems in cold maritime environments.Through numerical simulation methods,the influence of environmental parameters on icing chara...This study addresses the issue of spray icing on the air intake grilles of ship power systems in cold maritime environments.Through numerical simulation methods,the influence of environmental parameters on icing characteristics is revealed,and an energy-efficient zoned electric heating anti-icing strategy is proposed.A threedimensional grille model is constructed to systematically analyze the effects of environmental temperature(from−20℃to−4℃),droplet diameter(from 50μm to 500μm),and liquid water content(from 0.5 g/m³to 8 g/m³)on icing rates and blockage of the flow channel.The results indicate that low temperature and high liquid water content significantly exacerbate icing.Under the condition of an environmental temperature of−20℃,droplet diameter of 500μm,and liquid water content of 8 g/m³,the flow channel blockage ratio reaches 30.95%within 10 min.Additionally,as droplet diameter increases,the droplet impingement and icing regions become more concentrated toward the leading edge of blades.To mitigate grille icing in cold environments,an electric heating film configuration is employed for thermal protection.Optimization of the heating strategy reveals that the zoned heating approach,compared to the initial uniform heating scheme,effectively homogenizes surface temperature distribution while reducing total power consumption by 37.47%.This study validates the engineering applicability of the zoned electric heating anti/de-icing strategy,providing theoretical and technical support for the design of anti-icing systems in ship power systems operating in cold maritime regions.展开更多
基金supported by the National Key Laboratory of Advanced Composite Materials(No.KZ42191814)。
文摘The icing characteristics of supercooled large droplet(SLD)impacting carbon fiber-reinforced composites(CFRCs)remain poorly understood,hindering the enhancement of ice protection capabilities and the certification of ice-accreted composite aircraft.The paper systematically investigates the effects of the supercooling degree,the surface temperature,and the impact velocity on the ice accretion behavior of SLDs impacting carbon fiber-reinforced epoxy composite surfaces.To address the ice-prone nature of CFRCs,nanoparticle-modified anti-icing coatings are developed,and the icing characteristics of SLD-impacted modified carbon fiber-reinforced epoxy composite surfaces are analyzed.Results demonstrate that surface-modified carbon fiber-reinforced epoxy composite exhibits significantly delayed ice formation.Under conditions of droplet temperature(−15℃)and surface temperature(−18℃),the icing time of hydrophobic-modified CFRCs was delayed by over 1100 ms,representing a 5.4-fold improvement compared to the unmodified carbon fiber-reinforced epoxy composite.
基金supported in part by the National Natural Science Foundation of China(No.51806008)the Open Fund of Key Laboratory of Rotor Aerodynamics Key Laboratory(No.RAL202104-2)。
文摘This numerical simulation investigates the two⁃phase flow under the condition of supercooled large droplets impinging on the aircraft surface.Based on Eulerian framework,a method for calculating supercooled water droplet impingement characteristics is established.Then,considering the deformation and breaking effects during the movement,this method is extended to calculate the impingement characteristics of supercooled large droplets,as well as the bouncing and splashing effects during impingement.The impingement characteristics of supercooled large droplets is then investigated by this method.The results demonstrate that the deformation and breaking effects of supercooled large droplets have negligible influence on the impingement characteristics under the experimental conditions of this paper.In addition,the results of the impingement range and collection efficiency decrease when considering the bouncing and splashing effects.The bouncing effect mainly affects the mass loss near the impingement limits,while the splashing effect influences the result around the stagnation point.This investigation is beneficial for the analysis of aircraft icing and the design of anti⁃icing system with supercooled large droplet conditions.
文摘近年来全球极端低温天气频发,严重影响了茶树的产量和品质。ICE(Inducer of CBF expression)基因家族主要参与植物的低温胁迫响应,但在茶树领域中的相关研究还不够全面。本研究从茶树基因组中鉴定出51个茶树CsICEs基因,对其理化性质、基因结构和启动子顺式作用元件展开生物信息学分析。茶树CsICEs基因的启动子区域富含光响应、植物激素、生长发育及非生物胁迫相关顺式作用元件,其可能参与多种逆境胁迫响应。转录组分析和RT-qPCR验证结果发现,低温下CsICE43基因的表达量上升了4.24倍,其可能与茶树低温响应相关。以茶树品种‘保靖黄金茶1号’的cDNA为模板,克隆获得了CsICE43基因,其在不同组织中的表达模式存在差异,在顶芽和嫩叶中特异性高表达。蛋白氨基酸序列和系统进化树分析表明,CsICE43基因包含与ICE家族其他成员一致的S-rich、bHLH、ACT等保守结构域,且与毛花猕猴桃(Actinidiaeriantha)的亲缘关系较近。在STRING在线网站中以拟南芥AtICEs为模型,推测茶树CsICE43蛋白与HOS1、MYB15、DREB1/2存在潜在的互作关系。亚细胞定位试验表明CsICE43定位于细胞核,与跨膜结构分析结果一致。综上所述,本研究发现CsICE43基因可能与茶树低温响应关联,为深入挖掘其基因功能与抗寒分子机理提供了一定的理论基础。
基金supported in part by the National Key R&D Program of China(No.2022YFE0203700)the Aeronautical Science Foundation of China(No.2023Z010027001)。
文摘Existing icing detection technologies face challenges when applied to small and medium-sized aircraft,especially electric vertical take-off and landing(eVTOL)aircraft that meet the needs of low-altitude economic development.This study proposes a data-driven icing detection method based on rotor performance evolution.Through dry-air baseline tests and dynamic icing comparative experiments(wind speed 0—30 m/s,rotational speed 0—3000 r/min,collective pitch 0°—8°)of a 0.6 m rotor in the FL-61 icing wind tunnel,a multi-source heterogeneous dataset containing motion parameters,aerodynamic parameters,and icing state identifiers is constructed.An innovative signal processing architecture combining adaptive Kalman filtering and moving average cascading is adopted.And a comparative study is conducted on the performance of support vector machine(SVM),multilayer perceptron(MLP),and random forest(RF)algorithms,achieving real-time identification of icing states in rotating components.Experimental results demonstrate that the method exhibits a minimum detection latency of 6.9 s and 96%overall accuracy in reserved test cases,featuring low-latency and low false-alarm,providing a sensor-free lightweight solution for light/vertical takeoff and landing aircraft.
基金supported by the National Natural Science Foundation of China(No.52272428)。
文摘The electro⁃thermal anti/de-icing systems have high heating efficiency and relatively simple structures,marking them as a key development direction for future icing protection.Existing simulation algorithms for electrothermal de-icing seldom delve into comprehensive ice accretion-melting-deicing models that account for ice shedding.Therefore,the detachment behavior of ice layers during the heating process requires in-depth research and discussion.This paper physically models the phenomenon of ice shedding,incorporates the detachment behavior of ice layers during heating,improves the existing mathematical model for electro-thermal de-icing calculations,establishes an ice accretion-melting-deicing model for electro-thermal de-icing systems,and conducts numerical simulation,verification and optimization analysis of electro-thermal de-icing considering ice shedding.Through multi-condition de-icing numerical simulations of a specific wing model,it is found that ambient temperature can serve as a factor for adapting the electro heating anti/de-icing strategy to the environment.An optimization of heating heat flux density and heating/cooling time is conducted for the wing de-icing control law under the calculated conditions.The improved electrothermal de-icing model and algorithm developed in this paper provide solid technical support for the design of electrothermal de-icing systems.
基金supported in part by the Ship Preliminary Research Project (No.3020401020102)。
文摘This study addresses the issue of spray icing on the air intake grilles of ship power systems in cold maritime environments.Through numerical simulation methods,the influence of environmental parameters on icing characteristics is revealed,and an energy-efficient zoned electric heating anti-icing strategy is proposed.A threedimensional grille model is constructed to systematically analyze the effects of environmental temperature(from−20℃to−4℃),droplet diameter(from 50μm to 500μm),and liquid water content(from 0.5 g/m³to 8 g/m³)on icing rates and blockage of the flow channel.The results indicate that low temperature and high liquid water content significantly exacerbate icing.Under the condition of an environmental temperature of−20℃,droplet diameter of 500μm,and liquid water content of 8 g/m³,the flow channel blockage ratio reaches 30.95%within 10 min.Additionally,as droplet diameter increases,the droplet impingement and icing regions become more concentrated toward the leading edge of blades.To mitigate grille icing in cold environments,an electric heating film configuration is employed for thermal protection.Optimization of the heating strategy reveals that the zoned heating approach,compared to the initial uniform heating scheme,effectively homogenizes surface temperature distribution while reducing total power consumption by 37.47%.This study validates the engineering applicability of the zoned electric heating anti/de-icing strategy,providing theoretical and technical support for the design of anti-icing systems in ship power systems operating in cold maritime regions.