In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
In order to avoid severe performance degradation led by the inter-cell interference (ICI) in orthogonal frequency division multiple access (OFDMA) systems with a frequency reused factor (FRF) of 1,distributed schedule...In order to avoid severe performance degradation led by the inter-cell interference (ICI) in orthogonal frequency division multiple access (OFDMA) systems with a frequency reused factor (FRF) of 1,distributed schedule algorithm (DS-OCS) and distributed proportional fairness schedule algorithm (DPFS-OCS) based on orthogonal complement space (OCS) were proposed. The first right and left singular vectors of the channel that the user experienced were selected as the transmitting and receiving beamforming vectors. An interference space was spanned by the left singular vectors of the entire interference users in the same channel. The most suitable user lay in the OCS of the interference space was scheduled to avoid suffering interference from neighboring cells based on the criterion of system capacity maximizing and proportional fairness. The simulation results show that the average system capacity can be improved by 2%-4% compared with the DS-OCS algorithm with the Max C/I algorithm,by 6%-10% compared with the DPFS-OCS algorithm with the PF algorithm.展开更多
A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission.At first,based on description of satellite data transmission request,satellite data tra...A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission.At first,based on description of satellite data transmission request,satellite data transmission task model and satellite data transmission scheduling problem model are established.Secondly,the conflicts in scheduling are discussed.According to the meaning of possible conflict,the method to divide possible conflict task set is given.Thirdly,a hybrid algorithm which consists of genetic algorithm and heuristic information is presented.The heuristic information comes from two concepts,conflict degree and conflict number.Finally,an example shows the algorithm's feasibility and performance better than other traditional展开更多
在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随...在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。展开更多
Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the...Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the character and structure of scheduling. An optimal scheduling strategy in collision window is presented. Performance evaluation of this algorithm is given. Simulation indicates that the proposed algorithm is better than other common heuristic algorithms on both the total performance and stability.展开更多
A system model is formulated as the maximization of a total utility function to achieve fair downlink data scheduling in multiuser orthogonal frequency division multiplexing (OFDM) wireless networks. A dynamic subca...A system model is formulated as the maximization of a total utility function to achieve fair downlink data scheduling in multiuser orthogonal frequency division multiplexing (OFDM) wireless networks. A dynamic subcarrier allocation algorithm (DSAA) is proposed, to optimize the system model. The subcarrier allocation decision is made by the proposed DSAA according to the maximum value of total utility function with respect to the queue mean waiting time. Simulation results demonstrate that compared to the conventional algorithms, the proposed algorithm has better delay performance and can provide fairness under different loads by using different utility functions.展开更多
An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the obj...An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the objective of minimizing project duration Activities priorities for scheduling are represented by individual vectors and a senal scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated.To investigate the performance of the IDE-based approach for the RCPSP,it is compared against the meta-heuristic methods of hybrid genetic algorithm(HGA),particle swarm optimization(PSO) and several well selected heuristics.The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.展开更多
This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-object...This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-objective flexible job-shop scheduling problems(MOFJSPs) to minimize makespan, total machine workload and critical machine workload. An initialization program embedded in opposition-based learning(OBL) is developed for enabling the individuals to scatter in a well-distributed manner in the initial harmony memory(HM). In addition, the recursive halving technique based on opposite number is employed for shrinking the neighbourhood space in the searching phase of the OGHS. From a practice-related standpoint, a type of dual vector code technique is introduced for allowing the OGHS algorithm to adapt the discrete nature of the MOFJSP. Two practical techniques, namely Pareto optimality and technique for order preference by similarity to an ideal solution(TOPSIS), are implemented for solving the MOFJSP.Furthermore, the algorithm performance is tested by using different strategies, including OBL and recursive halving, and the OGHS is compared with existing algorithms in the latest studies.Experimental results on representative examples validate the performance of the proposed algorithm for solving the MOFJSP.展开更多
The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborativ...The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborative optimization algorithm is proposed for the FJSP.Multi-population structure is used to independently evolve two sub-problems of the FJSP in the MSCGA.Good operators are adopted and designed to ensure this algorithm to achieve a good performance.Some famous FJSP benchmarks are chosen to evaluate the effectiveness of the MSCGA.The adaptability and superiority of the proposed method are demonstrated by comparing with other reported algorithms.展开更多
The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job ther...The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job there is only one process plan that prescribes the sequence of operations and the machine on which each operation has to be performed.However,JSP with alternative machines for various operations is an extension of the classical JSP,which allows an operation to be processed by any machine from a given set of machines.Since this problem requires an additional decision of machine allocation during scheduling,it is much more complex than JSP.We present a domain independent genetic algorithm(GA) approach for the job shop scheduling problem with alternative machines.The GA is implemented in a spreadsheet environment.The performance of the proposed GA is analyzed by comparing with various problem instances taken from the literatures.The result shows that the proposed GA is competitive with the existing approaches.A simplified approach that would be beneficial to both practitioners and researchers is presented for solving scheduling problems with alternative machines.展开更多
To solve the scheduling problem of dual-armed cluster tools for wafer fabrications with residency time and reentrant constraints,a heuristic scheduling algorithm was developed.Firstly,on the basis of formulating sched...To solve the scheduling problem of dual-armed cluster tools for wafer fabrications with residency time and reentrant constraints,a heuristic scheduling algorithm was developed.Firstly,on the basis of formulating scheduling problems domain of dual-armed cluster tools,a non-integer programming model was set up with a minimizing objective function of the makespan.Combining characteristics of residency time and reentrant constraints,a scheduling algorithm of searching the optimal operation path of dual-armed transport module was presented under many kinds of robotic scheduling paths for dual-armed cluster tools.Finally,the experiments were designed to evaluate the proposed algorithm.The results show that the proposed algorithm is feasible and efficient for obtaining an optimal scheduling solution of dual-armed cluster tools with residency time and reentrant constraints.展开更多
The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a nov...The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a novel solution architecture.Taking the interference of the carrier-based aircraft deck layout on the weapon transportation route and precedence constraint into consideration,a mixed integer formulation is established to minimize the total objective,which is constituted of makespan,load variance and accumulative transfer time of support unit.Solution approach is developed for the model.Firstly,based on modeling the carrier aircraft parked on deck as convex obstacles,the path library of weapon transportation is constructed through visibility graph and Warshall-Floyd methods.We then propose a bi-population immune algorithm in which a population-based forward/backward scheduling technique,local search schemes and a chaotic catastrophe operator are embedded.Besides,the randomkey solution representation and serial scheduling generation scheme are adopted to conveniently obtain a better solution.The Taguchi method is additionally employed to determine key parameters of the algorithm.Finally,on a set of generated realistic instances,we demonstrate that the proposed algorithm outperforms all compared algorithms designed for similar optimization problems and can significantly improve the efficiency,and that the established model and the bi-population immune algorithm can effectively respond to the weapon support requirements of carrier-based aircraft under different sortie missions.展开更多
为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中...为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中的任务进行聚类,基于聚类结果,在多个雾服务器之间使用改进的免疫粒子群优化算法进行任务调度。实验结果表明,该算法相比其它一些传统的调度算法在完工时间、成本、负载均衡方面都有一定提升。展开更多
It is of great significance to carry out effective scheduling for the carrier-based aircraft flight deck operations.In this paper,the precedence constraints and resource constraints in flight deck operations are analy...It is of great significance to carry out effective scheduling for the carrier-based aircraft flight deck operations.In this paper,the precedence constraints and resource constraints in flight deck operations are analyzed,then the model of the multi-aircraft integrated scheduling problem with transfer times(MAISPTT)is established.A dual population multi-operator genetic algorithm(DPMOGA)is proposed for solving the problem.In the algorithm,the dual population structure and random-key encoding modified by starting/ending time of operations are adopted,and multiple genetic operators are self-adaptively used to obtain better encodings.In order to conduct the mapping from encodings to feasible schedules,serial and parallel scheduling generation scheme-based decoding operators,each of which adopts different justified mechanisms in two separated populations,are introduced.The superiority of the DPMOGA is verified by simulation experiments.展开更多
In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and r...In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.展开更多
To improve the productivity of cluster tools in semiconductor fabrications,on the basis of stating scheduling problems,a try and error-based scheduling algorithm was proposed with residency time constraints and an obj...To improve the productivity of cluster tools in semiconductor fabrications,on the basis of stating scheduling problems,a try and error-based scheduling algorithm was proposed with residency time constraints and an objective of minimizing Makespan for the wafer jobs in cluster tools.Firstly,mathematical formulations of scheduling problems were presented by using assumptions and definitions of a scheduling domain.Resource conflicts were analyzed in the built scheduling model,and policies to solve resource conflicts were built.A scheduling algorithm was developed.Finally,the performances of the proposed algorithm were evaluated and compared with those of other methods by simulations.Experiment results indicate that the proposed algorithm is effective and practical in solving the scheduling problem of the cluster tools.展开更多
The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain inde...The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model.展开更多
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
基金Projects(2009ZX03003-003, 2009ZX03003-004) supported by the Major National Science & Technology ProgramProject(B08038) supported by the "111" Project+1 种基金Project(HX0109012417) supported by Huawei Technologies Co., Ltd, ChinaProject(IRT0852) supported by Program for Changjiang Scholars and Innovative Research Team in Chinese University
文摘In order to avoid severe performance degradation led by the inter-cell interference (ICI) in orthogonal frequency division multiple access (OFDMA) systems with a frequency reused factor (FRF) of 1,distributed schedule algorithm (DS-OCS) and distributed proportional fairness schedule algorithm (DPFS-OCS) based on orthogonal complement space (OCS) were proposed. The first right and left singular vectors of the channel that the user experienced were selected as the transmitting and receiving beamforming vectors. An interference space was spanned by the left singular vectors of the entire interference users in the same channel. The most suitable user lay in the OCS of the interference space was scheduled to avoid suffering interference from neighboring cells based on the criterion of system capacity maximizing and proportional fairness. The simulation results show that the average system capacity can be improved by 2%-4% compared with the DS-OCS algorithm with the Max C/I algorithm,by 6%-10% compared with the DPFS-OCS algorithm with the PF algorithm.
文摘A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission.At first,based on description of satellite data transmission request,satellite data transmission task model and satellite data transmission scheduling problem model are established.Secondly,the conflicts in scheduling are discussed.According to the meaning of possible conflict,the method to divide possible conflict task set is given.Thirdly,a hybrid algorithm which consists of genetic algorithm and heuristic information is presented.The heuristic information comes from two concepts,conflict degree and conflict number.Finally,an example shows the algorithm's feasibility and performance better than other traditional
文摘在室内可见光通信中符号间干扰和噪声会严重影响系统性能,K均值(K-means)均衡方法可以抑制光无线信道的影响,但其复杂度较高,且在聚类边界处易出现误判。提出了改进聚类中心点的K-means(Improved Center K-means,IC-Kmeans)算法,通过随机生成足够长的训练序列,然后将训练序列每一簇的均值作为K-means聚类中心,避免了传统K-means反复迭代寻找聚类中心。进一步,提出了基于神经网络的IC-Kmeans(Neural Network Based IC-Kmeans,NNIC-Kmeans)算法,使用反向传播神经网络将接收端二维数据映射至三维空间,以增加不同簇之间混合数据的距离,提高了分类准确性。蒙特卡罗误码率仿真表明,IC-Kmeans均衡和传统K-means算法的误码率性能相当,但可以显著降低复杂度,特别是在信噪比较小时。同时,在室内多径信道模型下,与IC-Kmeans和传统Kmeans均衡相比,NNIC-Kmeans均衡的光正交频分复用系统误码率性能最好。
文摘Focusing on the single machine scheduling problem which minimizes the total completion time in the presence of dynamic job arrivals, a rolling optimization scheduling algorithm is proposed based on the analysis of the character and structure of scheduling. An optimal scheduling strategy in collision window is presented. Performance evaluation of this algorithm is given. Simulation indicates that the proposed algorithm is better than other common heuristic algorithms on both the total performance and stability.
文摘A system model is formulated as the maximization of a total utility function to achieve fair downlink data scheduling in multiuser orthogonal frequency division multiplexing (OFDM) wireless networks. A dynamic subcarrier allocation algorithm (DSAA) is proposed, to optimize the system model. The subcarrier allocation decision is made by the proposed DSAA according to the maximum value of total utility function with respect to the queue mean waiting time. Simulation results demonstrate that compared to the conventional algorithms, the proposed algorithm has better delay performance and can provide fairness under different loads by using different utility functions.
基金supported by the National Natural Science Foundation of China(6083500460775047+4 种基金60974048)the National High Technology Research and Development Program of China(863 Program)(2007AA0422442008AA04Z214)the Natural Science Foundation of Hunan Province(09JJ9012)Scientific Research Fund of Hunan Provincial Education Department(08C337)
文摘An improved differential evolution(IDE)algorithm that adopts a novel mutation strategy to speed up the convergence rate is introduced to solve the resource-constrained project scheduling problem(RCPSP)with the objective of minimizing project duration Activities priorities for scheduling are represented by individual vectors and a senal scheme is utilized to transform the individual-represented priorities to a feasible schedule according to the precedence and resource constraints so as to be evaluated.To investigate the performance of the IDE-based approach for the RCPSP,it is compared against the meta-heuristic methods of hybrid genetic algorithm(HGA),particle swarm optimization(PSO) and several well selected heuristics.The results show that the proposed scheduling method is better than general heuristic rules and is able to obtain the same optimal result as the HGA and PSO approaches but more efficient than the two algorithms.
基金supported by the National Key Research and Development Program of China(2016YFD0700605)the Fundamental Research Funds for the Central Universities(JZ2016HGBZ1035)the Anhui University Natural Science Research Project(KJ2017A891)
文摘This research provides academic and practical contributions. From a theoretical standpoint, a hybrid harmony search(HS)algorithm, namely the oppositional global-based HS(OGHS), is proposed for solving the multi-objective flexible job-shop scheduling problems(MOFJSPs) to minimize makespan, total machine workload and critical machine workload. An initialization program embedded in opposition-based learning(OBL) is developed for enabling the individuals to scatter in a well-distributed manner in the initial harmony memory(HM). In addition, the recursive halving technique based on opposite number is employed for shrinking the neighbourhood space in the searching phase of the OGHS. From a practice-related standpoint, a type of dual vector code technique is introduced for allowing the OGHS algorithm to adapt the discrete nature of the MOFJSP. Two practical techniques, namely Pareto optimality and technique for order preference by similarity to an ideal solution(TOPSIS), are implemented for solving the MOFJSP.Furthermore, the algorithm performance is tested by using different strategies, including OBL and recursive halving, and the OGHS is compared with existing algorithms in the latest studies.Experimental results on representative examples validate the performance of the proposed algorithm for solving the MOFJSP.
基金supported by the National Key R&D Program of China(2018AAA0101700)the Program for HUST Academic Frontier Youth Team(2017QYTD04).
文摘The flexible job shop scheduling problem(FJSP),which is NP-hard,widely exists in many manufacturing industries.It is very hard to be solved.A multi-swarm collaborative genetic algorithm(MSCGA)based on the collaborative optimization algorithm is proposed for the FJSP.Multi-population structure is used to independently evolve two sub-problems of the FJSP in the MSCGA.Good operators are adopted and designed to ensure this algorithm to achieve a good performance.Some famous FJSP benchmarks are chosen to evaluate the effectiveness of the MSCGA.The adaptability and superiority of the proposed method are demonstrated by comparing with other reported algorithms.
文摘The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job there is only one process plan that prescribes the sequence of operations and the machine on which each operation has to be performed.However,JSP with alternative machines for various operations is an extension of the classical JSP,which allows an operation to be processed by any machine from a given set of machines.Since this problem requires an additional decision of machine allocation during scheduling,it is much more complex than JSP.We present a domain independent genetic algorithm(GA) approach for the job shop scheduling problem with alternative machines.The GA is implemented in a spreadsheet environment.The performance of the proposed GA is analyzed by comparing with various problem instances taken from the literatures.The result shows that the proposed GA is competitive with the existing approaches.A simplified approach that would be beneficial to both practitioners and researchers is presented for solving scheduling problems with alternative machines.
基金Projects(7107111561273035)supported by the National Natural Science Foundation of China
文摘To solve the scheduling problem of dual-armed cluster tools for wafer fabrications with residency time and reentrant constraints,a heuristic scheduling algorithm was developed.Firstly,on the basis of formulating scheduling problems domain of dual-armed cluster tools,a non-integer programming model was set up with a minimizing objective function of the makespan.Combining characteristics of residency time and reentrant constraints,a scheduling algorithm of searching the optimal operation path of dual-armed transport module was presented under many kinds of robotic scheduling paths for dual-armed cluster tools.Finally,the experiments were designed to evaluate the proposed algorithm.The results show that the proposed algorithm is feasible and efficient for obtaining an optimal scheduling solution of dual-armed cluster tools with residency time and reentrant constraints.
基金the financial support of the National Natural Science Foundation of China(No.52102453)。
文摘The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a novel solution architecture.Taking the interference of the carrier-based aircraft deck layout on the weapon transportation route and precedence constraint into consideration,a mixed integer formulation is established to minimize the total objective,which is constituted of makespan,load variance and accumulative transfer time of support unit.Solution approach is developed for the model.Firstly,based on modeling the carrier aircraft parked on deck as convex obstacles,the path library of weapon transportation is constructed through visibility graph and Warshall-Floyd methods.We then propose a bi-population immune algorithm in which a population-based forward/backward scheduling technique,local search schemes and a chaotic catastrophe operator are embedded.Besides,the randomkey solution representation and serial scheduling generation scheme are adopted to conveniently obtain a better solution.The Taguchi method is additionally employed to determine key parameters of the algorithm.Finally,on a set of generated realistic instances,we demonstrate that the proposed algorithm outperforms all compared algorithms designed for similar optimization problems and can significantly improve the efficiency,and that the established model and the bi-population immune algorithm can effectively respond to the weapon support requirements of carrier-based aircraft under different sortie missions.
文摘为解决在IIoT(industrial internet of things)环境下,现有的调度算法调度工作流中通信频繁、数据传输量大的任务所带来的完工时间上升、成本增加等影响的问题,提出一种基于聚类的工作流多雾协同调度算法。通过二分K均值算法对工作流中的任务进行聚类,基于聚类结果,在多个雾服务器之间使用改进的免疫粒子群优化算法进行任务调度。实验结果表明,该算法相比其它一些传统的调度算法在完工时间、成本、负载均衡方面都有一定提升。
基金supported by the National Natural Science Foundation of China(61671462).
文摘It is of great significance to carry out effective scheduling for the carrier-based aircraft flight deck operations.In this paper,the precedence constraints and resource constraints in flight deck operations are analyzed,then the model of the multi-aircraft integrated scheduling problem with transfer times(MAISPTT)is established.A dual population multi-operator genetic algorithm(DPMOGA)is proposed for solving the problem.In the algorithm,the dual population structure and random-key encoding modified by starting/ending time of operations are adopted,and multiple genetic operators are self-adaptively used to obtain better encodings.In order to conduct the mapping from encodings to feasible schedules,serial and parallel scheduling generation scheme-based decoding operators,each of which adopts different justified mechanisms in two separated populations,are introduced.The superiority of the DPMOGA is verified by simulation experiments.
基金Project(51074051)supported by the National Natural Science Foundation of ChinaProject(N110307001)supported by the Fundamental Research Funds for the Central Universities,China
文摘In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.
基金Projects(71071115,60574054) supported by the National Natural Science Foundation of China
文摘To improve the productivity of cluster tools in semiconductor fabrications,on the basis of stating scheduling problems,a try and error-based scheduling algorithm was proposed with residency time constraints and an objective of minimizing Makespan for the wafer jobs in cluster tools.Firstly,mathematical formulations of scheduling problems were presented by using assumptions and definitions of a scheduling domain.Resource conflicts were analyzed in the built scheduling model,and policies to solve resource conflicts were built.A scheduling algorithm was developed.Finally,the performances of the proposed algorithm were evaluated and compared with those of other methods by simulations.Experiment results indicate that the proposed algorithm is effective and practical in solving the scheduling problem of the cluster tools.
文摘The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model.