期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Solving material distribution routing problem in mixed manufacturing systems with a hybrid multi-objective evolutionary algorithm 被引量:7
1
作者 高贵兵 张国军 +2 位作者 黄刚 朱海平 顾佩华 《Journal of Central South University》 SCIE EI CAS 2012年第2期433-442,共10页
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency... The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II. 展开更多
关键词 material distribution routing problem multi-objective optimization evolutionary algorithm local search
在线阅读 下载PDF
Optimal setting and placement of FACTS devices using strength Pareto multi-objective evolutionary algorithm 被引量:2
2
作者 Amin Safari Hossein Shayeghi Mojtaba Bagheri 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期829-839,共11页
This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for... This work proposes a novel approach for multi-type optimal placement of flexible AC transmission system(FACTS) devices so as to optimize multi-objective voltage stability problem. The current study discusses a way for locating and setting of thyristor controlled series capacitor(TCSC) and static var compensator(SVC) using the multi-objective optimization approach named strength pareto multi-objective evolutionary algorithm(SPMOEA). Maximization of the static voltage stability margin(SVSM) and minimizations of real power losses(RPL) and load voltage deviation(LVD) are taken as the goals or three objective functions, when optimally locating multi-type FACTS devices. The performance and effectiveness of the proposed approach has been validated by the simulation results of the IEEE 30-bus and IEEE 118-bus test systems. The proposed approach is compared with non-dominated sorting particle swarm optimization(NSPSO) algorithm. This comparison confirms the usefulness of the multi-objective proposed technique that makes it promising for determination of combinatorial problems of FACTS devices location and setting in large scale power systems. 展开更多
关键词 STRENGTH PARETO multi-objective evolutionary algorithm STATIC var COMPENSATOR (SVC) THYRISTOR controlled series capacitor (TCSC) STATIC voltage stability margin optimal location
在线阅读 下载PDF
An improved multi-objective optimization algorithm for solving flexible job shop scheduling problem with variable batches 被引量:3
3
作者 WU Xiuli PENG Junjian +2 位作者 XIE Zirun ZHAO Ning WU Shaomin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期272-285,共14页
In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop pro... In order to solve the flexible job shop scheduling problem with variable batches,we propose an improved multiobjective optimization algorithm,which combines the idea of inverse scheduling.First,a flexible job shop problem with the variable batches scheduling model is formulated.Second,we propose a batch optimization algorithm with inverse scheduling in which the batch size is adjusted by the dynamic feedback batch adjusting method.Moreover,in order to increase the diversity of the population,two methods are developed.One is the threshold to control the neighborhood updating,and the other is the dynamic clustering algorithm to update the population.Finally,a group of experiments are carried out.The results show that the improved multi-objective optimization algorithm can ensure the diversity of Pareto solutions effectively,and has effective performance in solving the flexible job shop scheduling problem with variable batches. 展开更多
关键词 flexible job shop variable batch inverse scheduling multi-objective evolutionary algorithm based on decomposition a batch optimization algorithm with inverse scheduling
在线阅读 下载PDF
一种基于Hypervolume指标的自适应邻域多目标进化算法 被引量:12
4
作者 郑金华 李珂 +1 位作者 李密青 文诗华 《计算机研究与发展》 EI CSCD 北大核心 2012年第2期312-326,共15页
通过定义反映个体之间邻近程度的指标(个体的树邻域包含关系),在考虑个体间支配关系的基础上,利用个体与其周边个体的树邻域密度进行适应度赋值;提出了一种2,3维情况下个体独立支配区域的Hypervolume指标的计算方法,该方法用于评价个体... 通过定义反映个体之间邻近程度的指标(个体的树邻域包含关系),在考虑个体间支配关系的基础上,利用个体与其周边个体的树邻域密度进行适应度赋值;提出了一种2,3维情况下个体独立支配区域的Hypervolume指标的计算方法,该方法用于评价个体对群体的贡献时只需要1次计算(同类方法需要2次计算);当外部种群中非支配个体数目超过规定规模时,根据个体独立支配区域的Hypervolume指标的大小对其进行修剪;在此基础上,提出了一种基于Hypervolume指标的自适应邻域多目标进化算法ANMOEA?HI.对比实验结果表明,ANMOEA?HI在保证了解集收敛性的同时亦拥有良好的分布性. 展开更多
关键词 最小生成树 树邻域密度 适应度赋值 hypervolume指标 种群维护 多目标进化算法
在线阅读 下载PDF
Multi-objective optimization of operation loop recommendation for kill web 被引量:7
5
作者 YANG Kewei XIA Boyuan +2 位作者 CHEN Gang YANG Zhiwei LI Minghao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期969-985,共17页
In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental ... In order to improve our military ’s level of intelligent accusation decision-making in future intelligent joint warfare, this paper studies operation loop recommendation methods for kill web based on the fundamental combat form of the future, i.e.,“web-based kill,” and the operation loop theory. Firstly, we pioneer the operation loop recommendation problem with operation ring quality as the objective and closed-loop time as the constraint, and construct the corresponding planning model.Secondly, considering the case where there are multiple decision objectives for the combat ring recommendation problem,we propose for the first time a multi-objective optimization algorithm, the multi-objective ant colony evolutionary algorithm based on decomposition(MOACEA/D), which integrates the multi-objective evolutionary algorithm based on decomposition(MOEA/D) with the ant colony algorithm. The MOACEA/D can converge the optimal solutions of multiple single objectives nondominated solution set for the multi-objective problem. Finally,compared with other classical multi-objective optimization algorithms, the MOACEA/D is superior to other algorithms superior in terms of the hyper volume(HV), which verifies the effectiveness of the method and greatly improves the quality and efficiency of commanders’ decision-making. 展开更多
关键词 multi-objective operation loop recommendation kill web ant colony evolutionary algorithm hyper volume(HV)
在线阅读 下载PDF
采用多目标网格进化算法并面向对象的舰船电网重构 被引量:8
6
作者 蒋燕君 姜建国 张宇华 《电力自动化设备》 EI CSCD 北大核心 2013年第3期26-32,共7页
考虑系统失电负荷量、电网有功损耗、线路负荷分配失衡度和开关操作次数,构造出舰船电网重构模型。以网格为载体,在邻域范围内进行选择、交叉和变异,采用精英策略,提出基于多目标进化并面向对象的舰船电网智能重构方法。该方法在不影响... 考虑系统失电负荷量、电网有功损耗、线路负荷分配失衡度和开关操作次数,构造出舰船电网重构模型。以网格为载体,在邻域范围内进行选择、交叉和变异,采用精英策略,提出基于多目标进化并面向对象的舰船电网智能重构方法。该方法在不影响解的全局最优性的基础上,极大缩短了算法执行时间,并将各种Pareto重构算法的共同属性和操作抽象出来形成公共基础平台,改进超体积指标计算方法,实现不同算法性能间的公平比较。算例分析结果表明,在算法运行时间及所获解集的趋近度和分布度方面,所提方法均优于NSGA-Ⅱ和SPEA2。 展开更多
关键词 网络重构 多目标网格进化算法 PARETO最优 超体积 舰船电网 进化算法
在线阅读 下载PDF
几种计算超体积算法的比较研究 被引量:2
7
作者 周秀玲 郭平 +1 位作者 陈宝维 王静 《计算机工程》 CAS CSCD 北大核心 2011年第3期152-154,157,共4页
对LebMeasure算法、HSO算法、HSO+MWW算法以及HKMP算法的基本思路、关键问题进行评述,在几种测试数据集上对算法的性能进行比较验证。实验结果表明,对于所有类型的前沿,HSO+MWW的性能好于HSO算法;当处理点的数目超过某一值时,HKMP算法... 对LebMeasure算法、HSO算法、HSO+MWW算法以及HKMP算法的基本思路、关键问题进行评述,在几种测试数据集上对算法的性能进行比较验证。实验结果表明,对于所有类型的前沿,HSO+MWW的性能好于HSO算法;当处理点的数目超过某一值时,HKMP算法的性能好于HSO算法,与理论分析一致;对于HKMP算法和HSO+MWW算法,在random和discontinuous前沿上,当处理点的数目超过某一值时,HKMP算法的性能好于HSO+MWW算法;但在spherical和degenerate前沿上,HSO+MWW算法的实际性能远好于HKMP算法。 展开更多
关键词 进化计算 多目标进化算法 超体积
在线阅读 下载PDF
An optimization model of UAV route planning for road segment surveillance 被引量:2
8
作者 刘晓锋 关志伟 +1 位作者 宋裕庆 陈大山 《Journal of Central South University》 SCIE EI CAS 2014年第6期2501-2510,共10页
Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization mode... Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization model of planning UAV route for road segment surveillance was proposed,which aimed to minimize UAV cruise distance and minimize the number of UAVs used.Then,an evolutionary algorithm based on Pareto optimality technique was proposed to solve multi-objective UAV route planning problem.At last,a UAV flight experiment was conducted to test UAV route planning effect,and a case with three scenarios was studied to analyze the impact of different road segment lengths on UAV route planning.The case results show that the optimized cruise distance and the number of UAVs used decrease by an average of 38.43% and 33.33%,respectively.Additionally,shortening or extending the length of road segments has different impacts on UAV route planning. 展开更多
关键词 unmanned aerial vehicle traffic surveillance route planning multi-objective optimization evolutionary algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部