A one-dimensional fluid/Monte-Carlo(MC)hybrid model is developed to describe capacitively coupled SiH_4/Ar discharge,in which the lower electrode is applied by a RF source and pulse modulated by a square-wave,to inv...A one-dimensional fluid/Monte-Carlo(MC)hybrid model is developed to describe capacitively coupled SiH_4/Ar discharge,in which the lower electrode is applied by a RF source and pulse modulated by a square-wave,to investigate the modulation effects of the pulse duty cycle on the discharge mechanism.An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase.Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species,such as electrons,ions,and radicals.The simulation results show that,the electron energy distribution f(ε)is modulated evidently within a pulse cycle,with its tail extending to higher energies during the power-on period,while shrinking back promptly in the afterglow period.Thus,the rate coefficients could be controlled during the discharge,resulting in modulation of the species composition on the substrate compared with continuous excitation.Meanwhile,more negative ions,like Si H_3^-and Si H_2^-,may escape to the electrodes owing to the collapse of ambipolar electric fields,which is beneficial to films deposition.Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components.展开更多
Modulation of lower hybrid current drive was used successfully to suppress MHD activity. This was achieved in discharges with MHD m = 2 tearing modes during the discharge conditions Ip = 110 kA, Bt = 1.75 T, ne0 - 1.1...Modulation of lower hybrid current drive was used successfully to suppress MHD activity. This was achieved in discharges with MHD m = 2 tearing modes during the discharge conditions Ip = 110 kA, Bt = 1.75 T, ne0 - 1.1 × 1013 cm-3. The delivering time of LHCD pulse is less then 30 μs. The amplitude, interval and the period of LHCD modulation pulse can be adjusted very conveniently. The modulation LHCD can be delivered very fast at any time during the discharge. The modulation LHCD period was always much shorter than the plasma resistive time (Tη ≈100 ms). So the profile of plasma current is changed much faster than the plasma resistive time. The different forms of LHCD modulating can be proved.展开更多
基金supported by National Natural Science Foundation of China(No.11275038)
文摘A one-dimensional fluid/Monte-Carlo(MC)hybrid model is developed to describe capacitively coupled SiH_4/Ar discharge,in which the lower electrode is applied by a RF source and pulse modulated by a square-wave,to investigate the modulation effects of the pulse duty cycle on the discharge mechanism.An electron Monte Carlo simulation is used to calculate the electron energy distribution as a function of position and time phase.Rate coefficients in chemical reactions can then be obtained and transferred to the fluid model for the calculation of electron temperature and densities of different species,such as electrons,ions,and radicals.The simulation results show that,the electron energy distribution f(ε)is modulated evidently within a pulse cycle,with its tail extending to higher energies during the power-on period,while shrinking back promptly in the afterglow period.Thus,the rate coefficients could be controlled during the discharge,resulting in modulation of the species composition on the substrate compared with continuous excitation.Meanwhile,more negative ions,like Si H_3^-and Si H_2^-,may escape to the electrodes owing to the collapse of ambipolar electric fields,which is beneficial to films deposition.Pulse modulation is thus expected to provide additional methods to customize the plasma densities and components.
基金The project supported by the National Natural Science Foundation of China (Nos. 10275068 and 10075049)
文摘Modulation of lower hybrid current drive was used successfully to suppress MHD activity. This was achieved in discharges with MHD m = 2 tearing modes during the discharge conditions Ip = 110 kA, Bt = 1.75 T, ne0 - 1.1 × 1013 cm-3. The delivering time of LHCD pulse is less then 30 μs. The amplitude, interval and the period of LHCD modulation pulse can be adjusted very conveniently. The modulation LHCD can be delivered very fast at any time during the discharge. The modulation LHCD period was always much shorter than the plasma resistive time (Tη ≈100 ms). So the profile of plasma current is changed much faster than the plasma resistive time. The different forms of LHCD modulating can be proved.