Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to...Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.展开更多
(Gd,Lu)_(2)O_(3)∶Eu scintillation ceramics have promising applications in the high-energy X-ray imaging.Eu0.1Gd0.6Lu1.3O3 nano-powders with pure phase were prepared from the precursor calcined at 1050℃for 4 h by the...(Gd,Lu)_(2)O_(3)∶Eu scintillation ceramics have promising applications in the high-energy X-ray imaging.Eu0.1Gd0.6Lu1.3O3 nano-powders with pure phase were prepared from the precursor calcined at 1050℃for 4 h by the co-precipitation method.Using the synthesized nano-powders as initial material,Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics were fabri-cated by vacuum pre-sintering at different temperatures for 2 h and hot isostatic pressing(HIP)at 1750℃for 3 h in ar-gon.The influence of pre-sintering temperature on the microstructure,optical and luminescence properties was investi-gated.The Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics pre-sintered at 1625℃for 2 h combined with HIP post-treatment show the high-est in-line transmittance of 75.2%at 611 nm.The photoluminescence(PL)and X-ray excited luminescence(XEL)spectra of the Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)transparent ceramics demonstrate a strong red emission peak at 611 nm due to the^(5)D_(0)→^(7)F_(2) transition of Eu^(3+).The PL,PLE and XEL intensities of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics show a trend of first ascending and then descending with the increase of pre-sintering temperature.The thermally stimulated lumines-cence(TSL)curve of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics presents one high peak at 178 K and two peaks with lower intensities at 253 K and 320 K.The peak at 320 K may be related to oxygen vacancies,and the lumines-cence peak at 178 K is related to defects caused by the valence state changes of Eu^(3+)ions.展开更多
A new method for manufacturing explosive charge liner of petroleum perforation bullet, using hot press sintering technique, has been introduced in the paper. The sintering process of making explosive charge liner has...A new method for manufacturing explosive charge liner of petroleum perforation bullet, using hot press sintering technique, has been introduced in the paper. The sintering process of making explosive charge liner has been investigated. The mechanical test and SEM analysis indicate that the property of the liner produced by the process is satisfied.展开更多
We reported an ultrabroadband mid-infrared(MIR)emission in the range of 1800 nm-3100 nm at room temperature(RT)from a Cr^(2+):ZnSe-doped chalcogenide glasses(ChGs)and studied the emission-dependent properties on the d...We reported an ultrabroadband mid-infrared(MIR)emission in the range of 1800 nm-3100 nm at room temperature(RT)from a Cr^(2+):ZnSe-doped chalcogenide glasses(ChGs)and studied the emission-dependent properties on the doping methods.A series of Cr^(2+):ZnSe/As_(40)S_(57)Se_(3)(in unit wt.%)glass-ceramics were prepared by hot uniaxial pressing(HUP)and melt-quenching methods,respectively.The glass-ceramics with MIR emission bands greater than 1000 nm were successfully prepared by both methods.The effects of matrix glass composition and grain doping concentration on the optical properties of the samples were studied.The occurrence state,morphology of the grains,and the microscopic elemental distributions were characterized using x-ray diffraction(XRD),scanning electron microscope(SEM),and energy dispersive spectrometer(EDS)analyses.展开更多
Fine-grained Nd10.79Pr2.8Al0.4B7.72Fe78.29 magnets were prepared by low temperature pre-sintering and subsequent hot pressing. The grain size of the magnets is just about 1–3 μm because the low sintering temperature...Fine-grained Nd10.79Pr2.8Al0.4B7.72Fe78.29 magnets were prepared by low temperature pre-sintering and subsequent hot pressing. The grain size of the magnets is just about 1–3 μm because the low sintering temperature results in no grain growth. The orientation degree, microstructure, and magnetic properties were studied. Some grains' easy axes deviate from the orientation direction, possibly due to grain rotation during the hot pressing. By subsequent annealing, the magnetic properties were significantly enhanced. Especially, the squareness of the demagnetization curve was improved greatly.The enhancement of coercivity by annealing can be explained by an improvement of both grain boundaries and magnetic isolation, which decouples the exchange interaction between neighboring grains.展开更多
The present work discusses the experimental study on wire-cut electric discharge machining of hot-pressed boron carbide.The effects of machining parameters,such as pulse on time(TON),peak current(IP),flushing pressure...The present work discusses the experimental study on wire-cut electric discharge machining of hot-pressed boron carbide.The effects of machining parameters,such as pulse on time(TON),peak current(IP),flushing pressure(FP) and spark voltage on material removal rate(MRR)and surface roughness(R_a) of the material,have been evaluated.These parameters are found to have an effect on the surface integrity of boron carbide machined samples.Wear rate of brass wire increases with rise in input energy in machining of hot-pressed boron carbide.The surfaces of machined samples were examined using scanning electron microscopy(SEM).The influence of machining parameters on mechanism of MRR and R_a was described.It was demonstrated that higher TON and peak current deteriorate the surface finish of boron carbide samples and result in the formation of large craters,debris and micro cracks.The generation of spherical particles was noticed and it was attributed to surface tension of molten material.Macro-ridges were also observed on the surface due to protrusion of molten material at higher discharge energy levels.展开更多
基金funding from the NATO Agency Science for Peace and Security (#G5787)Ballistic investigations were co-financed by Military University of Technology in Warsaw under research project UGB 829/2023/WATSeparate works made in G.V.Kurdyumov Institute for Metal Physics of N.A.S.of Ukraine were partially financially supported by N.A.S.of Ukraine within the frames of project#III09-18。
文摘Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually.
文摘(Gd,Lu)_(2)O_(3)∶Eu scintillation ceramics have promising applications in the high-energy X-ray imaging.Eu0.1Gd0.6Lu1.3O3 nano-powders with pure phase were prepared from the precursor calcined at 1050℃for 4 h by the co-precipitation method.Using the synthesized nano-powders as initial material,Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics were fabri-cated by vacuum pre-sintering at different temperatures for 2 h and hot isostatic pressing(HIP)at 1750℃for 3 h in ar-gon.The influence of pre-sintering temperature on the microstructure,optical and luminescence properties was investi-gated.The Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics pre-sintered at 1625℃for 2 h combined with HIP post-treatment show the high-est in-line transmittance of 75.2%at 611 nm.The photoluminescence(PL)and X-ray excited luminescence(XEL)spectra of the Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)transparent ceramics demonstrate a strong red emission peak at 611 nm due to the^(5)D_(0)→^(7)F_(2) transition of Eu^(3+).The PL,PLE and XEL intensities of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics show a trend of first ascending and then descending with the increase of pre-sintering temperature.The thermally stimulated lumines-cence(TSL)curve of the HIP post-treated Eu_(0.1)Gd_(0.6)Lu_(1.3)O_(3)ceramics presents one high peak at 178 K and two peaks with lower intensities at 253 K and 320 K.The peak at 320 K may be related to oxygen vacancies,and the lumines-cence peak at 178 K is related to defects caused by the valence state changes of Eu^(3+)ions.
文摘A new method for manufacturing explosive charge liner of petroleum perforation bullet, using hot press sintering technique, has been introduced in the paper. The sintering process of making explosive charge liner has been investigated. The mechanical test and SEM analysis indicate that the property of the liner produced by the process is satisfied.
基金Project supported by the Key Research and Development Program of Zhejiang Province,China (Grant No. 2021C01025)the National Natural Science Foundation of China (Grant Nos. 61975086 and 61605095)+3 种基金the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19F050004)the National Key Research and Development Program of China (Grant No. 2016YFB0303803)the K. C. Wong Magna Fund at Ningbo Universitythe Natural Science Foundation of Ningbo (Grant No. 202003N4180)
文摘We reported an ultrabroadband mid-infrared(MIR)emission in the range of 1800 nm-3100 nm at room temperature(RT)from a Cr^(2+):ZnSe-doped chalcogenide glasses(ChGs)and studied the emission-dependent properties on the doping methods.A series of Cr^(2+):ZnSe/As_(40)S_(57)Se_(3)(in unit wt.%)glass-ceramics were prepared by hot uniaxial pressing(HUP)and melt-quenching methods,respectively.The glass-ceramics with MIR emission bands greater than 1000 nm were successfully prepared by both methods.The effects of matrix glass composition and grain doping concentration on the optical properties of the samples were studied.The occurrence state,morphology of the grains,and the microscopic elemental distributions were characterized using x-ray diffraction(XRD),scanning electron microscope(SEM),and energy dispersive spectrometer(EDS)analyses.
基金Project supported by the National Natural Science Foundation of China(Grant No.51101167)the National Science and Technology Major Project,China(Grant No.2012ZX02702006-005)+2 种基金the Local Cooperation Project of Chinese Academy of Sciences(Grant No.DBSH-2011-013)the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ14E010007)the Natural Science Foundation of Ningbo,China(Grant No.2014A610161)
文摘Fine-grained Nd10.79Pr2.8Al0.4B7.72Fe78.29 magnets were prepared by low temperature pre-sintering and subsequent hot pressing. The grain size of the magnets is just about 1–3 μm because the low sintering temperature results in no grain growth. The orientation degree, microstructure, and magnetic properties were studied. Some grains' easy axes deviate from the orientation direction, possibly due to grain rotation during the hot pressing. By subsequent annealing, the magnetic properties were significantly enhanced. Especially, the squareness of the demagnetization curve was improved greatly.The enhancement of coercivity by annealing can be explained by an improvement of both grain boundaries and magnetic isolation, which decouples the exchange interaction between neighboring grains.
文摘The present work discusses the experimental study on wire-cut electric discharge machining of hot-pressed boron carbide.The effects of machining parameters,such as pulse on time(TON),peak current(IP),flushing pressure(FP) and spark voltage on material removal rate(MRR)and surface roughness(R_a) of the material,have been evaluated.These parameters are found to have an effect on the surface integrity of boron carbide machined samples.Wear rate of brass wire increases with rise in input energy in machining of hot-pressed boron carbide.The surfaces of machined samples were examined using scanning electron microscopy(SEM).The influence of machining parameters on mechanism of MRR and R_a was described.It was demonstrated that higher TON and peak current deteriorate the surface finish of boron carbide samples and result in the formation of large craters,debris and micro cracks.The generation of spherical particles was noticed and it was attributed to surface tension of molten material.Macro-ridges were also observed on the surface due to protrusion of molten material at higher discharge energy levels.