Recently,Artificial Neural Networks(ANNs)have been used for various scientific and engineering applications essentially because they allow the modeling of a process,which starts from the database containing the variab...Recently,Artificial Neural Networks(ANNs)have been used for various scientific and engineering applications essentially because they allow the modeling of a process,which starts from the database containing the variables that describe that particular process.They have already been applied to the study of landslides in particular,with reference to the indirect determination of the triggering展开更多
数据驱动建模方法改变了发电机传统的建模范式,导致传统的机电暂态时域仿真方法无法直接应用于新范式下的电力系统。为此,该文提出一种基于数据-模型混合驱动的机电暂态时域仿真(data and physics driven time domain simulation,DPD-T...数据驱动建模方法改变了发电机传统的建模范式,导致传统的机电暂态时域仿真方法无法直接应用于新范式下的电力系统。为此,该文提出一种基于数据-模型混合驱动的机电暂态时域仿真(data and physics driven time domain simulation,DPD-TDS)算法。算法中发电机状态变量与节点注入电流通过数据驱动模型推理计算,并通过网络方程完成节点电压计算,两者交替求解完成仿真。算法提出一种混合驱动范式下的网络代数方程组预处理方法,用以改善仿真的收敛性;算法设计一种中央处理器单元-神经网络处理器单元(central processing unit-neural network processing unit,CPU-NPU)异构计算框架以加速仿真,CPU进行机理模型的微分代数方程求解;NPU作协处理器完成数据驱动模型的前向推理。最后在IEEE-39和Polish-2383系统中将部分或全部发电机替换为数据驱动模型进行验证,仿真结果表明,所提出的仿真算法收敛性好,计算速度快,结果准确。展开更多
根据1998-2013年中西太平洋鲣鱼围网生产统计数据以及海洋环境数据,采用BP人工神经网络模型,分别以初值化后的单位捕捞努力量渔获量(CPUE,Catch per unit of effort)和捕捞努力量(Fishing Effort)作为中心渔场的表征因子,并作为BP模型...根据1998-2013年中西太平洋鲣鱼围网生产统计数据以及海洋环境数据,采用BP人工神经网络模型,分别以初值化后的单位捕捞努力量渔获量(CPUE,Catch per unit of effort)和捕捞努力量(Fishing Effort)作为中心渔场的表征因子,并作为BP模型的输出因子,以时间因子、空间因子、海洋环境因子(包括海表温度SST、海面高度SSH、Nino3.4区海表指标及叶绿素浓度Chl-a)等作为输入因子,构建22个BP神经网络模型,以最小拟合残差作为判断标准,比较渔场预报模型优劣。实验结果,以捕捞努力量为输出因子的模型的最小拟合残差均小于以CPUE为输出因子的模型,表明捕捞努力量更适合作为表征中心渔场的因子;同时,拟合残差的平均值随着输入因子的增加而减少,表明本研究所选的时间、空间、海洋环境因子等对鲣鱼中心渔场预报均极为重要。其中,以月份、经度、纬度、SST、SSH、Nino3.4a、Chl-a为输入因子,以初值化后的捕捞努力量为输出因子,结构为7-5-1的BP神经网络模型预报精度为最高,影响因子的重要性从高到低依次是经度、Chl-a、SST、纬度、NINO3.4a、SSH、月份。展开更多
文摘Recently,Artificial Neural Networks(ANNs)have been used for various scientific and engineering applications essentially because they allow the modeling of a process,which starts from the database containing the variables that describe that particular process.They have already been applied to the study of landslides in particular,with reference to the indirect determination of the triggering
文摘根据1998-2013年中西太平洋鲣鱼围网生产统计数据以及海洋环境数据,采用BP人工神经网络模型,分别以初值化后的单位捕捞努力量渔获量(CPUE,Catch per unit of effort)和捕捞努力量(Fishing Effort)作为中心渔场的表征因子,并作为BP模型的输出因子,以时间因子、空间因子、海洋环境因子(包括海表温度SST、海面高度SSH、Nino3.4区海表指标及叶绿素浓度Chl-a)等作为输入因子,构建22个BP神经网络模型,以最小拟合残差作为判断标准,比较渔场预报模型优劣。实验结果,以捕捞努力量为输出因子的模型的最小拟合残差均小于以CPUE为输出因子的模型,表明捕捞努力量更适合作为表征中心渔场的因子;同时,拟合残差的平均值随着输入因子的增加而减少,表明本研究所选的时间、空间、海洋环境因子等对鲣鱼中心渔场预报均极为重要。其中,以月份、经度、纬度、SST、SSH、Nino3.4a、Chl-a为输入因子,以初值化后的捕捞努力量为输出因子,结构为7-5-1的BP神经网络模型预报精度为最高,影响因子的重要性从高到低依次是经度、Chl-a、SST、纬度、NINO3.4a、SSH、月份。