Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re...Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.展开更多
LiNi_(0.5)Mn_(1.5)O_4(LNMO) was prepared by a high-temperature solid phase method,and then Al PO_(4)(AP) was coated on the polyhedral LNMO surface by the wet chemical method.The experimental results showed that the LN...LiNi_(0.5)Mn_(1.5)O_4(LNMO) was prepared by a high-temperature solid phase method,and then Al PO_(4)(AP) was coated on the polyhedral LNMO surface by the wet chemical method.The experimental results showed that the LNMO-1%AP|Li cell prepared with a 1%mass ratio of Al PO_(4and) LNMO had better electrochemical performance;after 450 cycles at 1C,its discharge specific capacity maintained 108.78 m Ah·g^(-1),while that of the LNMO|Li cell was only 86.04 m Ah·g^(-1).Especially at the high rates of 5C and 10C,the electrochemical properties of the former were far superior to the latter.This was attributed to the fact that the AP coating made the surface of LNMO in contact with the electrolyte more stable,effectively promoted the Li~+transport,and reduced the polarization voltage of the electrode.展开更多
基金supported by the National Key R&D Program of China(2024YFB4106400)National Natural Science Foundation of China(22209200,52302331)。
文摘Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.
文摘LiNi_(0.5)Mn_(1.5)O_4(LNMO) was prepared by a high-temperature solid phase method,and then Al PO_(4)(AP) was coated on the polyhedral LNMO surface by the wet chemical method.The experimental results showed that the LNMO-1%AP|Li cell prepared with a 1%mass ratio of Al PO_(4and) LNMO had better electrochemical performance;after 450 cycles at 1C,its discharge specific capacity maintained 108.78 m Ah·g^(-1),while that of the LNMO|Li cell was only 86.04 m Ah·g^(-1).Especially at the high rates of 5C and 10C,the electrochemical properties of the former were far superior to the latter.This was attributed to the fact that the AP coating made the surface of LNMO in contact with the electrolyte more stable,effectively promoted the Li~+transport,and reduced the polarization voltage of the electrode.