Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polyca...Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polycarboxlic series high range water reduce agent and sodium sulfate hardening accelerating agent. Two kinds of curing condition, namely steam curing condition and standard curing condition, are adopted. The result shows that HPC, added with polycarboxlic series of high performance water reducer, has high workability and strength, while sodium sulfate accelerating agent causes poor workability and low strength. Thus for vapor-cured HPC and its formulations, naphthalene series high range water reducing agent with less sodium sulfate should be given pri- ority. Therefore, the differences of curing conditions should be considered when selecting HPC admixtures.展开更多
The influence of glycol,the main composition of the most frequently used aircraft dicer,on the freeze-thaw durability of high performance concrete(HPC)is investigated.Freeze-thaw durability of HPC is tested by accel...The influence of glycol,the main composition of the most frequently used aircraft dicer,on the freeze-thaw durability of high performance concrete(HPC)is investigated.Freeze-thaw durability of HPC is tested by accelerated freeze-thaw test.Four kinds of the solution,i.e.,tap water,3.5% NaCl solution,glycol solutions,and a LBR-A type commercial aircraft deicer are employed.Results show that freeze-thaw durability of HPC exposed to glycol solutions is closely related to the solution concentrations.The failure of HPC exposed to 3.5% glycol solution is similar to that of those exposed to 3.5% NaCl solution,i.e.,serious surface scaling.While the damage of HPC exposed to 12.5%—25% glycol solutions is postponed.Compared with glycol solution,the commercial aircraft deicer has much more negative effects on HPC freeze-thaw durability compared with 3.5% NaCl solution.In the presence of commercial aircraft deicer for HPC subjected to freeze-thaw cycles,the deterioration is mainly due to scaling and spalling.展开更多
Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost...Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost alkaline all-iron flow battery by coupling ferri/ferro-cyanide redox couple with ferric/ferrous-gluconate complexes redox couple.The designed all-iron flow battery demonstrates a coulombic efficiency of above 99%and an energy efficiency of~83%at a current density of80 m A cm^(-2),which can continuously run for more than 950 cycles.Most importantly,the battery demonstrates a coulombic efficiency of more than 99.0%and an energy efficiency of~83%for a long duration(~12,16 and 20 h per cycle)charge/discharge process.Benefiting from the low cost of iron electrolytes,the overall cost of the all-iron flow battery system can be reached as low as$76.11 per k Wh based on a10 h system with a power of 9.9 k W.This work provides a new option for next-generation cost-effective flow batteries for long duration large scale energy storage.展开更多
A Schottky barrier diode with low-barrier is presented, based on which a terahertz waveguide detector working at 500-600 GHz is designed and fabricated. By using the InGaAs/InP material system, the feature of the low ...A Schottky barrier diode with low-barrier is presented, based on which a terahertz waveguide detector working at 500-600 GHz is designed and fabricated. By using the InGaAs/InP material system, the feature of the low barrier is obtained which greatly improves the performance of the detector. The measured typical voltage responsivity is about 900 V/W at 50-560 OHz and is about 400 V/W at 560 600 GHz. The proposed broadband waveguide detector has the characteristics of simple structure, compact size, low cost and high performance, and can be used in a variety of applications such as imaging, moleeuIar spectroscopy and atmospheric remote sensing.展开更多
Low cost, high performance supercapacitor electrodes were fabricated using coconut waste as precursor. Simple one step pyrolysis is adopted to get the spherical shaped particle where lignocellulosic nature of carbon c...Low cost, high performance supercapacitor electrodes were fabricated using coconut waste as precursor. Simple one step pyrolysis is adopted to get the spherical shaped particle where lignocellulosic nature of carbon converts into porous carbon nanospheres. Three types of coconut wastes, namely, coconut fiber(CF), coconut leaves(CL) and coconut stick(CS) have been studied and compared for their application in supercapacitors. Uniform spherical shape with particle size ranging from 30 to 60 nm for leaves and sticks and20 nm for fibers was obtained. The electrochemical properties of the porous carbon nanospheres were studied using cyclic voltammetry(CV), chronopotentiometry(CP) and electrochemical impedance spectroscopy(EIS). The porous carbon nanospheres derived from all the three biowaste samples show good electrochemical performance for supercapacitor application. Porous carbon nanospheres derived from coconut fiber exhibited maximum specific capacitance of 236 F/g followed by coconut stick and coconut leaves with 208 and 116 F/g respectively at a scan rate of 2 m V/s. Further impedance studies showed a charge transfer resistance of 4.9 for the porous carbon nanospheres derived from coconut fiber, while those from coconut leaves and coconut stick exhibited a slightly higher resistance of 6 and14.2, respectively. The simple eco-friendly approach we have demonstrated for synthesizing coconut waste based carbon nanospheres makes them excellent candidates for future, low-cost, energy storage devices.展开更多
Aqueous rechargeable zinc batteries are getting increasing attention for large-scale energy storage owing to their advantages in terms of cost,environmental friendliness and safety.Here,the layered puckeredγ’-V_(2)O...Aqueous rechargeable zinc batteries are getting increasing attention for large-scale energy storage owing to their advantages in terms of cost,environmental friendliness and safety.Here,the layered puckeredγ’-V_(2)O_(5) polymorph with a porous morphology is firstly introduced as cathode for an aqueous zinc battery system in a binary Zn^(2+)/Li^(+)electrolyte.The Zn‖γ’-V_(2)O_(5) cell delivers high capacities of 240 and190 mAh g^(-1) at current densities of 29 and 147 mA g^(-1),respectively,and remarkable cycling stability in the 1.6 V-0.7 V voltage window(97%retention after 100 cycles at 0.15 A g^(-1)).The detailed structural evolution during first discharge-charge and subsequent cycling is investigated using X-ray diffraction and Raman spectroscopy.We demonstrate a reaction mechanism based on a selective Li insertion in the1.6 V-1.0 V voltage range.It involves a reversible exchange of 0.8 Li^(+)in γ’-V_(2)O_(5) and the same structural response as the one reported in lithiated organic electrolyte.However,in the extended 1.6 V-0.7 V voltage range,this work puts forward a concomitant and gradual phase transformation from γ’-V_(2)O_(5) to zinc pyrovanadate Zn_(3)V_(2)O_(7)(OH)2.2 H_(2)O(ZVO)during cycling.Such mechanism involving the in-situ formation of ZVO,known as an efficient Zn and Li intercalation material,explains the high electrochemical performance here reported for the Zn‖γ’-V_(2)O_(5) cell.This work highlights the peculiar layered-puckeredγ’-V_(2)O_(5) polymorph outperforms the conventionalα-V_(2)O_(5) with a huge improvement of capacity of 240 mAh g^(-1)vs 80 mAh g^(-1) in the same electrolyte and voltage window.展开更多
The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffus...The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffusion principle and electro-chemical principle. The GHPC admixture consists of fly ash, gangue, slag, red mud, etc., of which the mass fraction of industrial residues is over 96 %. The anti-permeabilities and anti-corrodibilities of the tested GHPC and normal concrete (NC) are evaluated by the Diffusion Coefficients of chloride which was obtained by measuring the concentration of chloride in the tested systems by the voltage difference method. It is found that the adoption of GHPC admixture greatly improves the anti-chloride permeability and anti-chloride corrodibility by modifying the inner structure and contracting the porosity of concrete to the reduce considerably the diffusion rate of chloride. The admixture is desirable regarding its engineering performances as well as economical and environmental interests.展开更多
Thermal expansion is a common phenomenon in both metals and alloys, which is important for metallic material applications in modern industry, especially in nuclear and aerospace industries. A lower thermal expansion c...Thermal expansion is a common phenomenon in both metals and alloys, which is important for metallic material applications in modern industry, especially in nuclear and aerospace industries. A lower thermal expansion coefficient may cause lower thermal stress and higher accuracy. A new Zr-based alloy is developed and presented.The XRD diffraction results demonstrate that only a close-packed hexagonal phase(α or α' phase) exists in the microstructure. The thermal expansion and mechanical properties are studied. According to the experimental results, the new Zr-based alloy presents a low thermal expansion coefficient and good mechanical properties.Also,its thermal expansion coefficient is stable through solution treatment.展开更多
40K is one of the most important atomic species for ultra-cold atomic physics. Due to the extremely low con- centration (0.012%) of 40K in natural abundance of potassium, most experiments use 4-10% enriched potassiu...40K is one of the most important atomic species for ultra-cold atomic physics. Due to the extremely low con- centration (0.012%) of 40K in natural abundance of potassium, most experiments use 4-10% enriched potassium source, which have greatly suffered from the extremely low annual production and significant price hikes in recent years. Using naturally abundant potassium source, we capture 5.4 × 10 6 cold 40K atoms with the help of a high performance of two-dimensional magneto-optical trap (2D+ MOT), which is almost three orders of magnitude greater than previous results without the 2D+ MOT. The number of the 40K atoms is sufficient for most ultra-cold 40K experiments, and our approach provides an ideal alternative for the field.展开更多
Further improving the railway innovation capacity and technological strength is the important goal of the 14th Five-Year Plan for railway scientific and technological innovation.It includes promoting the deep integrat...Further improving the railway innovation capacity and technological strength is the important goal of the 14th Five-Year Plan for railway scientific and technological innovation.It includes promoting the deep integration of cutting-edge technologies with the railway systems,strengthening the research and application of intelligent railway technologies,applying green computing technologies and advancing the collaborative sharing of transportation big data.The high-speed rail system tasks need to process huge amounts of data and heavy workload with the requirement of ultra-fast response.Therefore,it is of great necessity to promote computation efficiency by applying High Performance Computing(HPC)to high-speed rail systems.The HPC technique is a great solution for improving the performance,efficiency,and safety of high-speed rail systems.In this review,we introduce and analyze the application research of high performance computing technology in the field of highspeed railways.These HPC applications are cataloged into four broad categories,namely:fault diagnosis,network and communication,management system,and simulations.Moreover,challenges and issues to be addressed are discussed and further directions are suggested.展开更多
The method of reversed-phase high performance liquid chromatography was established for the determination of effective components in OC-CS spray using double wavelength UV detection.The method was utilized under follo...The method of reversed-phase high performance liquid chromatography was established for the determination of effective components in OC-CS spray using double wavelength UV detection.The method was utilized under following conditions:a column of Kromasil C18(250 mm × 4.6 mm,5 μm),mobile phase consisting of methanol/water(80 /20) at a flow rate of 0.8 mL/min,column temperature of 25 ℃,and the UV detection at 227 nm and 300 nm.Three key components in OC-CS spray could be distinguished clearly,including o-chlorobenzalmalononitrile(CS),oleoresin capsicum(OC) and dihydrocapsaicin(DC).This method has the advantages of fast,simple and satisfactory linear relationship between UV absorption and concentration.It may be considered to turn into a standard method for detection of related components in the spray.展开更多
Organic-inorganic nanojunctions can result in a selective scattering of charge carrier depending on their energy, which leads to a simultaneous increase in the Seebeck coefficient S and the power factor. In this work,...Organic-inorganic nanojunctions can result in a selective scattering of charge carrier depending on their energy, which leads to a simultaneous increase in the Seebeck coefficient S and the power factor. In this work, the nanojunction is successfully employed at the organic-inorganic semiconductor interface of polyparaphenylene (PPP) and Zn1-xAgxO nanoparticles through the sol-gel method. The presence of nanoinclusions PPP in Zno.gAgoa 0 matrix is found to be effective in improving the figure of merit (ZT) by the dual effects of an increase in the power factor consistent with the heterojunetion effect and a reduction in thermal conductivity. Zno.gAgo.10/0.1 wt% PPP exhibits a maximum figure of merit, i.e., ZT= 0.22.展开更多
Molybdenum sulfide(MoS_(2))with well-designed porous structure has the potential to be great electrode materials in sodium-ion batteries due to its high theoretical capacity and abundant resource,however,hindered by i...Molybdenum sulfide(MoS_(2))with well-designed porous structure has the potential to be great electrode materials in sodium-ion batteries due to its high theoretical capacity and abundant resource,however,hindered by its intrinsic low conductivity and stability.Herein,MoS_(2) with 3 D macroporous foam structure and high conductivity was obtained through SiO_(2) templates and integrated with carbon paper(3 D FMoS_(2)/CP).It has showed superior specific capacity(225 m A h g^(-1),0.4–3 V)and cycling stability(1000 cycles)at high rate(2000 m A g^(-1)),with a low decay rate(0.033%per cycle)in sodium-ion batteries.The excellent electrochemical performance may originate from its unique integrated structure:3 D MoS_(2) macropores providing high surface area and abundant transfer channels while carbon paper enhancing the conductivity of MoS_(2) and avoiding unnecessary side reactions brought by binder addition.展开更多
Nickel oxide (NiO_(x)) has significant cost and stability advantages over poly[bis (4-phenyl)(2,4,6-trimethyl phenyl)amine](PTAA) for inverted p-i-n perovskite solar cells (PSCs),but the poor NiO_(x)/perovskite contac...Nickel oxide (NiO_(x)) has significant cost and stability advantages over poly[bis (4-phenyl)(2,4,6-trimethyl phenyl)amine](PTAA) for inverted p-i-n perovskite solar cells (PSCs),but the poor NiO_(x)/perovskite contact stemming from some reactive species at the interface led to suboptimal device performance.To solve this problem,we take a multiple donor molecule approach,using 3,3’-(4,8-bis(hexylthio)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl)bis(10-(6-bromohexyl)-10H-phenoxazine)(BDT-POZ) as an example,to modify the NiO_(x)/perovskite interface.The primary goal was to reduce the under-coordinated Ni^(≥3+) cations via electron transfer from the donor molecules to NiO_(x),thus mitigating the detrimental reactions between perovskite and NiO_(x).Equally importantly,the hole extraction at the interface was greatly enhanced after the organic donor modification,since the hydrophobic species atop NiO_(x) not only enabled pinhole-free crystallization of the perovskite but also properly tuned the interfacial energy level alignment.Consequently,the PSCs with NiO_(x)/BDT-POZ HTL achieved a high power conversion efficiency (PCE) up to 20.16%,which compared excellently with that of the non-modified devices (17.83%).This work provides a new strategy to tackle the exacting issues that have so far impeded the development of NiO_(x) based PSCs.展开更多
Fracture behavior is one of the most important,yet still little understood properties of ultra-high performance cementitious composites(UHPCC),a new marine structural engineering material. Research on the fracture and...Fracture behavior is one of the most important,yet still little understood properties of ultra-high performance cementitious composites(UHPCC),a new marine structural engineering material. Research on the fracture and direct tension behavior of UHPCC was carried out.The constitution law of UHPCC was divided into three phases:pre-partial debonding,partial debonding,and pullout phases.A direct tension constitution law was constructed based on the proposed fiber reinforcing parameter as a function of fiber volume fraction,fiber diameter and length,and fiber bonding strength.With the definition of linear crack shape,the energy release rate of UHPCC was derived and the R-curve equation was calculated from this.Loading tests of UHPCC using a three-point bending beam with an initial notch were carried out.The predictions from the proposed R-curve were in good agreement with the test results, indicating that the proposed R-curve accurately describes the fracture resistance of UHPCC.Introduction of a fiber reinforcement parameter bridges the fracture property R-curve and micro-composites’ mechanics parameters together.This has laid the foundation for further research into fracture properties based on micro-mechanics.The proposed tension constitution law and R-curve can be references for future UHPCC fracture evaluation.展开更多
Modification was made on the reversed-phase high performance liquid chromatography(RP-HPLC)with Yue et al's method as a base.The modified RP-HPLC was used to detect leukotriene B_4(LTB_4)and 5-hydroxyeicosatetraen...Modification was made on the reversed-phase high performance liquid chromatography(RP-HPLC)with Yue et al's method as a base.The modified RP-HPLC was used to detect leukotriene B_4(LTB_4)and 5-hydroxyeicosatetraenoic acid(5-HETE).It was found that the modified method has the merits of simpler procedures,shorter testing time and more satisfactory efficacy.展开更多
A time-of-flight (TOF) detector has been used in the BESIII experiment to provide charged particle identification. In this paper, we present a novel high performance differential amplifier, which has been designed for...A time-of-flight (TOF) detector has been used in the BESIII experiment to provide charged particle identification. In this paper, we present a novel high performance differential amplifier, which has been designed for amplifying the signals from the detectors. The preamplifier can amplify differential signals, which can help to eliminate the common mode pickup, and increase the signal-to-noise ratio (SNR). Bilinear gain is one of the features of this preamplifier, which greatly increases the dynamic range and avoids the dead time of the preamplifier. In order to describe the bilinear gain, a 4-parameter function is developed. And this 4-parameter function can also be used in the calibration of the time walk caused by the amplitude due to the bilinear gain. The preamplifier has a gain about 10V/V with a small signal and about 1.0V/V with a large signal. The rise time of the preamp is less than 2 ns.展开更多
Bismuth has drawn widespread attention as a prospective alloying-type anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its large volumetric capacity.However,such material encounters drastic ...Bismuth has drawn widespread attention as a prospective alloying-type anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its large volumetric capacity.However,such material encounters drastic particle pulverization and overgrowth of solid-electrolyte interphase(SEI)upon repeated(de)alloying,thus causing poor rate and cycling degradation.Herein,we report a unique structure design with bismuth nanorods confined in hollow N,S-codoped carbon nanotubes(Bi@NS-C)fabricated by a solvothermal method and in-situ thermal reduction.Ex-situ SEM observations confirm that such a design can significantly suppress the size fining of Bi nanorods,thus inhibiting the particle pulverization and repeated SEI growth upon charging/discharging.The as achieved Bi@NS-C demonstrates outstanding rate capability for SIBs(96.5%capacity retention at 30 A g^(-1) vs.1 A g^(-1)),and a record high rate performance for PIBs(399.5 m Ah g^(-1)@20 A g^(-1)).Notably,the as constructed full cell(Na_(3)V_(2)(PO_(4))_(3)@C|Bi@NS-C)demonstrates impressive performance with a high energy density of 219.8 W h kg^(-1) and a high-power density of 6443.3 W kg^(-1)(based on the total mass of active materials on both electrodes),outperforming the state-of-the-art literature.展开更多
All-inorganic CsPbIBr_(2) perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability.However,the deposition of high-quality solutionprocess...All-inorganic CsPbIBr_(2) perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability.However,the deposition of high-quality solutionprocessed CsPbIBr_(2) perovskite films with large thicknesses remains challenging.Here,we develop a triple-component precursor(TCP) by employing lead bromide,lead iodide,and cesium bromide,to replace the most commonly used double-component precursor(DCP) consisting of lead bromide and cesium iodide.Remarkably,the TCP system significantly increases the solution concentration to 1.3 M,leading to a larger film thickness(~390 nm) and enhanced light absorption.The resultant CsPbIBr_(2) films were evaluated in planar n-i-p structured solar cells,which exhibit a considerably higher optimal photocurrent density of 11.50 mA cm^(-2) in comparison to that of DCP-based devices(10.69 mA cm^(-2)).By adopting an organic surface passivator,the maximum device efficiency using TCP is further boosted to a record efficiency of 12.8% for CsPbIBr_(2) perovskite solar cells.展开更多
Supercapacitors, with ultrahigh power density, superior rate capability, long-term cyclability, and exceptional safety, are regarded as one highly competitive candidate of electrochemical energy storage devices,fillin...Supercapacitors, with ultrahigh power density, superior rate capability, long-term cyclability, and exceptional safety, are regarded as one highly competitive candidate of electrochemical energy storage devices,filling the gap between batteries and conventional capacitors. Despite of tremendous effort, elaborated screening of high-performance electrode materials, e.g., graphene, is still intensively required. In this review, we describe the most recent progress in the research and development of graphene-based materials for high-performance and new-concept supercapacitors for the targeted applications in next-generation and smart electronics. First, the design and fabrication of high-performance supercapacitors, including electrical double layer capacitors, pseudocapacitors and hybrid supercapacitors, were summarized in term of the charge storage mechanism. Second, new-concept supercapacitors with multiple functionalities of high-voltage, fiber-shape, microscale and shape-diversity in order to fulfill the requirements of future electronics are reviewed. Accordingly, special emphasis is given to the structure-dependent-performance effects of pores, hybridization, dimensionalities of graphene-based materials on performance of supercapacitors, and tremendous potential of graphene-based planar micro-supercapacitors for the direct seamlessly integration with versatile micro-electronics. Finally, perspectives and challenges of graphene-based supercapacitors are briefly discussed.展开更多
基金Supported by the National Basic Research Programe of China("973"Program)(2009CB623203)the Construction Department of Zhejiang Province Foundation(1006)+1 种基金the Education Department of Zhejiang Province Foundation(Y200909029)the Doctoral Innovation Foundation of Nanjing University of Aeronautics andAstronautics(BCXJ07-04)~~
文摘Influences of admixtures on the workability and strength of high performance concrete (HPC) are in- vestigated. The types of investigated admixtures include naphthalene series high range water reducing agent, polycarboxlic series high range water reduce agent and sodium sulfate hardening accelerating agent. Two kinds of curing condition, namely steam curing condition and standard curing condition, are adopted. The result shows that HPC, added with polycarboxlic series of high performance water reducer, has high workability and strength, while sodium sulfate accelerating agent causes poor workability and low strength. Thus for vapor-cured HPC and its formulations, naphthalene series high range water reducing agent with less sodium sulfate should be given pri- ority. Therefore, the differences of curing conditions should be considered when selecting HPC admixtures.
基金Supported by the National Basic Research Program of China("973"Program)(2009CB623203)the China Postdoctoral Science Foundation(20070421036)+1 种基金the Natural Science Foundation of Jiangsu Province(BK2005216)the Research Foundation of Nanjing University of Aeronautics and Astronautics(NS2010015)~~
文摘The influence of glycol,the main composition of the most frequently used aircraft dicer,on the freeze-thaw durability of high performance concrete(HPC)is investigated.Freeze-thaw durability of HPC is tested by accelerated freeze-thaw test.Four kinds of the solution,i.e.,tap water,3.5% NaCl solution,glycol solutions,and a LBR-A type commercial aircraft deicer are employed.Results show that freeze-thaw durability of HPC exposed to glycol solutions is closely related to the solution concentrations.The failure of HPC exposed to 3.5% glycol solution is similar to that of those exposed to 3.5% NaCl solution,i.e.,serious surface scaling.While the damage of HPC exposed to 12.5%—25% glycol solutions is postponed.Compared with glycol solution,the commercial aircraft deicer has much more negative effects on HPC freeze-thaw durability compared with 3.5% NaCl solution.In the presence of commercial aircraft deicer for HPC subjected to freeze-thaw cycles,the deterioration is mainly due to scaling and spalling.
基金the financial support from National Natural Science Foundation of China(22078313,21908214 and 21925804)the Dalian High Level Talent Innovation support program(2020RD05)+2 种基金the Dalian Young Star of Science and Technology(2021RQ122)the Free exploring basic research project of Liaoning(2022JH6/100100005)the Youth Innovation Promotion Association CAS(2019182)。
文摘Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost alkaline all-iron flow battery by coupling ferri/ferro-cyanide redox couple with ferric/ferrous-gluconate complexes redox couple.The designed all-iron flow battery demonstrates a coulombic efficiency of above 99%and an energy efficiency of~83%at a current density of80 m A cm^(-2),which can continuously run for more than 950 cycles.Most importantly,the battery demonstrates a coulombic efficiency of more than 99.0%and an energy efficiency of~83%for a long duration(~12,16 and 20 h per cycle)charge/discharge process.Benefiting from the low cost of iron electrolytes,the overall cost of the all-iron flow battery system can be reached as low as$76.11 per k Wh based on a10 h system with a power of 9.9 k W.This work provides a new option for next-generation cost-effective flow batteries for long duration large scale energy storage.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2011AA010203the National Basic Research Program of China under Grant Nos 2011CB201704 and 2010CB327502the National Natural Science Foundation of China under Grant No 61434006
文摘A Schottky barrier diode with low-barrier is presented, based on which a terahertz waveguide detector working at 500-600 GHz is designed and fabricated. By using the InGaAs/InP material system, the feature of the low barrier is obtained which greatly improves the performance of the detector. The measured typical voltage responsivity is about 900 V/W at 50-560 OHz and is about 400 V/W at 560 600 GHz. The proposed broadband waveguide detector has the characteristics of simple structure, compact size, low cost and high performance, and can be used in a variety of applications such as imaging, moleeuIar spectroscopy and atmospheric remote sensing.
文摘Low cost, high performance supercapacitor electrodes were fabricated using coconut waste as precursor. Simple one step pyrolysis is adopted to get the spherical shaped particle where lignocellulosic nature of carbon converts into porous carbon nanospheres. Three types of coconut wastes, namely, coconut fiber(CF), coconut leaves(CL) and coconut stick(CS) have been studied and compared for their application in supercapacitors. Uniform spherical shape with particle size ranging from 30 to 60 nm for leaves and sticks and20 nm for fibers was obtained. The electrochemical properties of the porous carbon nanospheres were studied using cyclic voltammetry(CV), chronopotentiometry(CP) and electrochemical impedance spectroscopy(EIS). The porous carbon nanospheres derived from all the three biowaste samples show good electrochemical performance for supercapacitor application. Porous carbon nanospheres derived from coconut fiber exhibited maximum specific capacitance of 236 F/g followed by coconut stick and coconut leaves with 208 and 116 F/g respectively at a scan rate of 2 m V/s. Further impedance studies showed a charge transfer resistance of 4.9 for the porous carbon nanospheres derived from coconut fiber, while those from coconut leaves and coconut stick exhibited a slightly higher resistance of 6 and14.2, respectively. The simple eco-friendly approach we have demonstrated for synthesizing coconut waste based carbon nanospheres makes them excellent candidates for future, low-cost, energy storage devices.
基金the Ministry of Education and Science of Kazakhstan(grant number AP05136016-ZRABS)French Embassy in Astana,Kazakhstan and Campus France for financial support。
文摘Aqueous rechargeable zinc batteries are getting increasing attention for large-scale energy storage owing to their advantages in terms of cost,environmental friendliness and safety.Here,the layered puckeredγ’-V_(2)O_(5) polymorph with a porous morphology is firstly introduced as cathode for an aqueous zinc battery system in a binary Zn^(2+)/Li^(+)electrolyte.The Zn‖γ’-V_(2)O_(5) cell delivers high capacities of 240 and190 mAh g^(-1) at current densities of 29 and 147 mA g^(-1),respectively,and remarkable cycling stability in the 1.6 V-0.7 V voltage window(97%retention after 100 cycles at 0.15 A g^(-1)).The detailed structural evolution during first discharge-charge and subsequent cycling is investigated using X-ray diffraction and Raman spectroscopy.We demonstrate a reaction mechanism based on a selective Li insertion in the1.6 V-1.0 V voltage range.It involves a reversible exchange of 0.8 Li^(+)in γ’-V_(2)O_(5) and the same structural response as the one reported in lithiated organic electrolyte.However,in the extended 1.6 V-0.7 V voltage range,this work puts forward a concomitant and gradual phase transformation from γ’-V_(2)O_(5) to zinc pyrovanadate Zn_(3)V_(2)O_(7)(OH)2.2 H_(2)O(ZVO)during cycling.Such mechanism involving the in-situ formation of ZVO,known as an efficient Zn and Li intercalation material,explains the high electrochemical performance here reported for the Zn‖γ’-V_(2)O_(5) cell.This work highlights the peculiar layered-puckeredγ’-V_(2)O_(5) polymorph outperforms the conventionalα-V_(2)O_(5) with a huge improvement of capacity of 240 mAh g^(-1)vs 80 mAh g^(-1) in the same electrolyte and voltage window.
文摘The effects of green high performance concrete (GHPC) admixture on the anti-chloride permeability and anti- chloride corrodibility of concrete are studied by a series of experiments designed on the basis of the diffusion principle and electro-chemical principle. The GHPC admixture consists of fly ash, gangue, slag, red mud, etc., of which the mass fraction of industrial residues is over 96 %. The anti-permeabilities and anti-corrodibilities of the tested GHPC and normal concrete (NC) are evaluated by the Diffusion Coefficients of chloride which was obtained by measuring the concentration of chloride in the tested systems by the voltage difference method. It is found that the adoption of GHPC admixture greatly improves the anti-chloride permeability and anti-chloride corrodibility by modifying the inner structure and contracting the porosity of concrete to the reduce considerably the diffusion rate of chloride. The admixture is desirable regarding its engineering performances as well as economical and environmental interests.
基金Supported by the Postdoctoral Science Foundation of Hebei Province under Grant No B2017003008the National Natural Science Foundation of China under Grant Nos 51531005,51671166,51571174 and 51604241the Natural Science Foundation of Hebei Province under Grant No E2016203395
文摘Thermal expansion is a common phenomenon in both metals and alloys, which is important for metallic material applications in modern industry, especially in nuclear and aerospace industries. A lower thermal expansion coefficient may cause lower thermal stress and higher accuracy. A new Zr-based alloy is developed and presented.The XRD diffraction results demonstrate that only a close-packed hexagonal phase(α or α' phase) exists in the microstructure. The thermal expansion and mechanical properties are studied. According to the experimental results, the new Zr-based alloy presents a low thermal expansion coefficient and good mechanical properties.Also,its thermal expansion coefficient is stable through solution treatment.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0300600 and2016YFA0301500the National Natural Science Foundation of China under Grant Nos 11474347,61227902 and 61775232
文摘40K is one of the most important atomic species for ultra-cold atomic physics. Due to the extremely low con- centration (0.012%) of 40K in natural abundance of potassium, most experiments use 4-10% enriched potassium source, which have greatly suffered from the extremely low annual production and significant price hikes in recent years. Using naturally abundant potassium source, we capture 5.4 × 10 6 cold 40K atoms with the help of a high performance of two-dimensional magneto-optical trap (2D+ MOT), which is almost three orders of magnitude greater than previous results without the 2D+ MOT. The number of the 40K atoms is sufficient for most ultra-cold 40K experiments, and our approach provides an ideal alternative for the field.
基金supported in part by the Talent Fund of Beijing Jiaotong University(2023XKRC017)in part by Research and Development Project of China State Railway Group Co.,Ltd.(P2022Z003).
文摘Further improving the railway innovation capacity and technological strength is the important goal of the 14th Five-Year Plan for railway scientific and technological innovation.It includes promoting the deep integration of cutting-edge technologies with the railway systems,strengthening the research and application of intelligent railway technologies,applying green computing technologies and advancing the collaborative sharing of transportation big data.The high-speed rail system tasks need to process huge amounts of data and heavy workload with the requirement of ultra-fast response.Therefore,it is of great necessity to promote computation efficiency by applying High Performance Computing(HPC)to high-speed rail systems.The HPC technique is a great solution for improving the performance,efficiency,and safety of high-speed rail systems.In this review,we introduce and analyze the application research of high performance computing technology in the field of highspeed railways.These HPC applications are cataloged into four broad categories,namely:fault diagnosis,network and communication,management system,and simulations.Moreover,challenges and issues to be addressed are discussed and further directions are suggested.
基金Sponsored by the Basic Research Funds of Beijing Institute of Technology (20081642007)
文摘The method of reversed-phase high performance liquid chromatography was established for the determination of effective components in OC-CS spray using double wavelength UV detection.The method was utilized under following conditions:a column of Kromasil C18(250 mm × 4.6 mm,5 μm),mobile phase consisting of methanol/water(80 /20) at a flow rate of 0.8 mL/min,column temperature of 25 ℃,and the UV detection at 227 nm and 300 nm.Three key components in OC-CS spray could be distinguished clearly,including o-chlorobenzalmalononitrile(CS),oleoresin capsicum(OC) and dihydrocapsaicin(DC).This method has the advantages of fast,simple and satisfactory linear relationship between UV absorption and concentration.It may be considered to turn into a standard method for detection of related components in the spray.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51476095 and 51206103the Innovation Program of Shanghai Municipal Education Commission under Grant No 13YZ128the Program for Professor of Special Appointment(Eastern Scholar) at Shanghai Institutions of Higher Learning
文摘Organic-inorganic nanojunctions can result in a selective scattering of charge carrier depending on their energy, which leads to a simultaneous increase in the Seebeck coefficient S and the power factor. In this work, the nanojunction is successfully employed at the organic-inorganic semiconductor interface of polyparaphenylene (PPP) and Zn1-xAgxO nanoparticles through the sol-gel method. The presence of nanoinclusions PPP in Zno.gAgoa 0 matrix is found to be effective in improving the figure of merit (ZT) by the dual effects of an increase in the power factor consistent with the heterojunetion effect and a reduction in thermal conductivity. Zno.gAgo.10/0.1 wt% PPP exhibits a maximum figure of merit, i.e., ZT= 0.22.
基金supported financially by the National Key R&D Program of China(No.2016YFA0204100,2016YFA0200200)the National Natural Science Foundation of China(No.21890753,21988101,21905035)+1 种基金the Danish company Haldor Tops?e A/S,Liaoning Revitalization Talents Program(XLYC1907093)the Liaoning Natural Science Foundation(20180510043)。
文摘Molybdenum sulfide(MoS_(2))with well-designed porous structure has the potential to be great electrode materials in sodium-ion batteries due to its high theoretical capacity and abundant resource,however,hindered by its intrinsic low conductivity and stability.Herein,MoS_(2) with 3 D macroporous foam structure and high conductivity was obtained through SiO_(2) templates and integrated with carbon paper(3 D FMoS_(2)/CP).It has showed superior specific capacity(225 m A h g^(-1),0.4–3 V)and cycling stability(1000 cycles)at high rate(2000 m A g^(-1)),with a low decay rate(0.033%per cycle)in sodium-ion batteries.The excellent electrochemical performance may originate from its unique integrated structure:3 D MoS_(2) macropores providing high surface area and abundant transfer channels while carbon paper enhancing the conductivity of MoS_(2) and avoiding unnecessary side reactions brought by binder addition.
基金the support from NSFC(U2001217,21972006,51803035)the Shenzhen Peacock Plan(KQTD2016053015544057)+4 种基金the Shenzhen-Hong Kong Innovation Circle United Research Project(SGLH20180622092406130)the Nanshan Pilot Plan(LHTD20170001)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110981)the Research Fund Program of Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices(2019B121203003)the Shenzhen Fundamental Research Program(JCYJ20190813105205501)。
文摘Nickel oxide (NiO_(x)) has significant cost and stability advantages over poly[bis (4-phenyl)(2,4,6-trimethyl phenyl)amine](PTAA) for inverted p-i-n perovskite solar cells (PSCs),but the poor NiO_(x)/perovskite contact stemming from some reactive species at the interface led to suboptimal device performance.To solve this problem,we take a multiple donor molecule approach,using 3,3’-(4,8-bis(hexylthio)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl)bis(10-(6-bromohexyl)-10H-phenoxazine)(BDT-POZ) as an example,to modify the NiO_(x)/perovskite interface.The primary goal was to reduce the under-coordinated Ni^(≥3+) cations via electron transfer from the donor molecules to NiO_(x),thus mitigating the detrimental reactions between perovskite and NiO_(x).Equally importantly,the hole extraction at the interface was greatly enhanced after the organic donor modification,since the hydrophobic species atop NiO_(x) not only enabled pinhole-free crystallization of the perovskite but also properly tuned the interfacial energy level alignment.Consequently,the PSCs with NiO_(x)/BDT-POZ HTL achieved a high power conversion efficiency (PCE) up to 20.16%,which compared excellently with that of the non-modified devices (17.83%).This work provides a new strategy to tackle the exacting issues that have so far impeded the development of NiO_(x) based PSCs.
基金the Center of Concrete Corea,Korea Development and Application of High Performance and Multi-Function Concrete(05-CCT-D11)
文摘Fracture behavior is one of the most important,yet still little understood properties of ultra-high performance cementitious composites(UHPCC),a new marine structural engineering material. Research on the fracture and direct tension behavior of UHPCC was carried out.The constitution law of UHPCC was divided into three phases:pre-partial debonding,partial debonding,and pullout phases.A direct tension constitution law was constructed based on the proposed fiber reinforcing parameter as a function of fiber volume fraction,fiber diameter and length,and fiber bonding strength.With the definition of linear crack shape,the energy release rate of UHPCC was derived and the R-curve equation was calculated from this.Loading tests of UHPCC using a three-point bending beam with an initial notch were carried out.The predictions from the proposed R-curve were in good agreement with the test results, indicating that the proposed R-curve accurately describes the fracture resistance of UHPCC.Introduction of a fiber reinforcement parameter bridges the fracture property R-curve and micro-composites’ mechanics parameters together.This has laid the foundation for further research into fracture properties based on micro-mechanics.The proposed tension constitution law and R-curve can be references for future UHPCC fracture evaluation.
文摘Modification was made on the reversed-phase high performance liquid chromatography(RP-HPLC)with Yue et al's method as a base.The modified RP-HPLC was used to detect leukotriene B_4(LTB_4)and 5-hydroxyeicosatetraenoic acid(5-HETE).It was found that the modified method has the merits of simpler procedures,shorter testing time and more satisfactory efficacy.
基金The project supported by the major upgrade program of the Beijing Electron Positron Collider Ⅱ
文摘A time-of-flight (TOF) detector has been used in the BESIII experiment to provide charged particle identification. In this paper, we present a novel high performance differential amplifier, which has been designed for amplifying the signals from the detectors. The preamplifier can amplify differential signals, which can help to eliminate the common mode pickup, and increase the signal-to-noise ratio (SNR). Bilinear gain is one of the features of this preamplifier, which greatly increases the dynamic range and avoids the dead time of the preamplifier. In order to describe the bilinear gain, a 4-parameter function is developed. And this 4-parameter function can also be used in the calibration of the time walk caused by the amplitude due to the bilinear gain. The preamplifier has a gain about 10V/V with a small signal and about 1.0V/V with a large signal. The rise time of the preamp is less than 2 ns.
基金supported by the National Natural Science Foundation of China(22179077,51774251)the Shanghai Science and Technology Commission’s"2020 Science and Technology Innovation Action Plan"(20511104003)+2 种基金the Natural Science Foundation in Shanghai(21ZR1424200)the Hebei Natural Science Foundation for Distinguished Young Scholars(B2017203313)the Scientific Research Foundation for the Returned Overseas Chinese Scholars(CG2014003002)。
文摘Bismuth has drawn widespread attention as a prospective alloying-type anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its large volumetric capacity.However,such material encounters drastic particle pulverization and overgrowth of solid-electrolyte interphase(SEI)upon repeated(de)alloying,thus causing poor rate and cycling degradation.Herein,we report a unique structure design with bismuth nanorods confined in hollow N,S-codoped carbon nanotubes(Bi@NS-C)fabricated by a solvothermal method and in-situ thermal reduction.Ex-situ SEM observations confirm that such a design can significantly suppress the size fining of Bi nanorods,thus inhibiting the particle pulverization and repeated SEI growth upon charging/discharging.The as achieved Bi@NS-C demonstrates outstanding rate capability for SIBs(96.5%capacity retention at 30 A g^(-1) vs.1 A g^(-1)),and a record high rate performance for PIBs(399.5 m Ah g^(-1)@20 A g^(-1)).Notably,the as constructed full cell(Na_(3)V_(2)(PO_(4))_(3)@C|Bi@NS-C)demonstrates impressive performance with a high energy density of 219.8 W h kg^(-1) and a high-power density of 6443.3 W kg^(-1)(based on the total mass of active materials on both electrodes),outperforming the state-of-the-art literature.
基金The authors acknowledge the financial support by the National Natural Science Foundation of China(52161145408 and 21975038)the Research and Innovation Team Project of Dalian University of Technology(DUT2022TB10)+2 种基金the Fundamental Research Funds for the Central Universities(DUT22QN213)the Innovation Technology Fund(MRP/040/21X)the Green Technology Fund(GTF202020164)for their financial support。
文摘All-inorganic CsPbIBr_(2) perovskite has attracted widespread attention in photovoltaic and other optoelectronic devices because of its superior thermal stability.However,the deposition of high-quality solutionprocessed CsPbIBr_(2) perovskite films with large thicknesses remains challenging.Here,we develop a triple-component precursor(TCP) by employing lead bromide,lead iodide,and cesium bromide,to replace the most commonly used double-component precursor(DCP) consisting of lead bromide and cesium iodide.Remarkably,the TCP system significantly increases the solution concentration to 1.3 M,leading to a larger film thickness(~390 nm) and enhanced light absorption.The resultant CsPbIBr_(2) films were evaluated in planar n-i-p structured solar cells,which exhibit a considerably higher optimal photocurrent density of 11.50 mA cm^(-2) in comparison to that of DCP-based devices(10.69 mA cm^(-2)).By adopting an organic surface passivator,the maximum device efficiency using TCP is further boosted to a record efficiency of 12.8% for CsPbIBr_(2) perovskite solar cells.
基金financially supported by the National Natural Science Foundation of China(Grant 51572259)National Key R&D Program of China(Grant 2016YBF0100100 and2016YFA0200200)+2 种基金Natural Science Foundation of Liaoning Province(Grant 201602737)Thousand Youth Talents Plan of China,DICP(DICP ZZBS201708)Exploratory Research Projects of Shaanxi Yanchang Petroleum(Group)CO.,LTD&DICP
文摘Supercapacitors, with ultrahigh power density, superior rate capability, long-term cyclability, and exceptional safety, are regarded as one highly competitive candidate of electrochemical energy storage devices,filling the gap between batteries and conventional capacitors. Despite of tremendous effort, elaborated screening of high-performance electrode materials, e.g., graphene, is still intensively required. In this review, we describe the most recent progress in the research and development of graphene-based materials for high-performance and new-concept supercapacitors for the targeted applications in next-generation and smart electronics. First, the design and fabrication of high-performance supercapacitors, including electrical double layer capacitors, pseudocapacitors and hybrid supercapacitors, were summarized in term of the charge storage mechanism. Second, new-concept supercapacitors with multiple functionalities of high-voltage, fiber-shape, microscale and shape-diversity in order to fulfill the requirements of future electronics are reviewed. Accordingly, special emphasis is given to the structure-dependent-performance effects of pores, hybridization, dimensionalities of graphene-based materials on performance of supercapacitors, and tremendous potential of graphene-based planar micro-supercapacitors for the direct seamlessly integration with versatile micro-electronics. Finally, perspectives and challenges of graphene-based supercapacitors are briefly discussed.