期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
结合力导向图分布算法的特征加权深度嵌入聚类
1
作者 吕维 钱宇华 +2 位作者 王婕婷 李飞江 胡深 《小型微型计算机系统》 CSCD 北大核心 2024年第6期1318-1324,共7页
聚类分析作为无监督学习领域的一个重要研究方向,是许多数据驱动应用的核心.但是高维数据特有的高维距离趋同特性,使得高维空间样本近邻结构遭到破坏,从而使得大量基于距离(基于近邻)的聚类算法性能急剧下降.目前,大量研究者认为,高维... 聚类分析作为无监督学习领域的一个重要研究方向,是许多数据驱动应用的核心.但是高维数据特有的高维距离趋同特性,使得高维空间样本近邻结构遭到破坏,从而使得大量基于距离(基于近邻)的聚类算法性能急剧下降.目前,大量研究者认为,高维数据往往包含大量与任务不相关特征及相互关联的特征,其真实特征维度往往要比原始特征维度低很多.在学习样本低维等价表示上,基于深度自编码器的深度嵌入学习尽可能地保留重构信息.然而,现有此类方法往往需要聚类损失引导聚类,这虽然提高了聚类性能,但聚类损失与重构损失间的内在矛盾,限制了聚类性能的进一步提高.基于力导向图分布算法的降维算法则是尽可能保留近邻结构信息的基础上学习样本低维表示,但是高维距离趋同的特性使得此类算法较难准确获取样本高维近邻结构信息.本文在深度自编码器与力导向图分布算法的基础上引入特征加权思想,使模型在具有强大的低维等价表示能力及根据数据近邻结构凸显簇结构能力的同时考虑特征对聚类任务的适合程度.5个数据集上与最新高维聚类算法的对比实验充分证明了本文算法的合理性与优越性. 展开更多
关键词 高维聚类 深度自编码器 特征加权 力导向图分布算法
在线阅读 下载PDF
异构并行计算下高维混合型数据聚类算法研究 被引量:3
2
作者 祝鹏 《现代电子技术》 北大核心 2024年第9期139-142,共4页
高维数据维度增加,数据空间的体积呈指数增长,容易陷入“维数灾难”,导致聚类算法执行效率低,为此,提出异构并行计算下高维混合型数据聚类算法。构建高维混合型数据相异度矩阵,提取高维混合型数据的统计序列特征值,利用时间窗口进行特... 高维数据维度增加,数据空间的体积呈指数增长,容易陷入“维数灾难”,导致聚类算法执行效率低,为此,提出异构并行计算下高维混合型数据聚类算法。构建高维混合型数据相异度矩阵,提取高维混合型数据的统计序列特征值,利用时间窗口进行特征优化。采用K⁃Prototypes聚类算法提取高维混合型数据的统计序列特征,评估数据与类中心的相异性,计算数据与类中心的欧氏距离,实现高维混合型数据聚类。采用异构并行计算技术进行高维混合型数据K⁃Prototypes聚类的并行化处理,合理分配CPU与GPU工作,达到CPU与GPU的工作负载平衡,提高K⁃Prototypes的聚类效率。实验结果表明,此算法对于高维混合型数据的聚类效果好、运行时间短、性能稳定。 展开更多
关键词 异构并行计算 高维混合型数据 K⁃Prototypes聚类算法 欧氏距离 统计序列特征 负载平衡
在线阅读 下载PDF
基于高维数据优化聚类的长周期峰谷时段划分模型研究 被引量:13
3
作者 李娜 王磊 +3 位作者 张文月 王玉玮 舒艳 张超 《现代电力》 北大核心 2016年第4期67-71,共5页
为了使峰谷时段划分结果客观反映出各时段的负荷差异,且能够在一个较长的时间周期(例如1a)内适用,本文提出一种以数据样本集高维化处理和K-均值聚类分析相结合的时段划分模型。首先,通过数据高维化的处理方法构建涵盖较长时间周期(例如... 为了使峰谷时段划分结果客观反映出各时段的负荷差异,且能够在一个较长的时间周期(例如1a)内适用,本文提出一种以数据样本集高维化处理和K-均值聚类分析相结合的时段划分模型。首先,通过数据高维化的处理方法构建涵盖较长时间周期(例如1a)内所有负荷信息的数据样本集;其次,以K-均值算法为聚类分析工具,在高维数据样本集上构建峰谷时段划分模型。最后,结合某区全年负荷数据,对所构建的模型进行算例仿真,在验证模型的合理性基础上,最终输出时段划分结果。 展开更多
关键词 时段划分 聚类分析 K-均值算法 数据高维化
在线阅读 下载PDF
基于k最相似聚类的子空间聚类算法 被引量:8
4
作者 单世民 闫妍 张宪超 《计算机工程》 CAS CSCD 北大核心 2009年第14期4-6,共3页
子空间聚类是聚类研究领域的一个重要分支和研究热点,用于解决高维聚类分析面临的数据稀疏问题。提出一种基于k最相似聚类的子空间聚类算法。该算法使用一种聚类间相似度度量方法保留k最相似聚类,在不同子空间上采用不同局部密度阈值,通... 子空间聚类是聚类研究领域的一个重要分支和研究热点,用于解决高维聚类分析面临的数据稀疏问题。提出一种基于k最相似聚类的子空间聚类算法。该算法使用一种聚类间相似度度量方法保留k最相似聚类,在不同子空间上采用不同局部密度阈值,通过k最相似聚类确定子空间搜索方向。将处理的数据类型扩展到连续型和分类型,可以有效处理高维数据聚类问题。实验结果证明,与CLIQUE和SUBCLU相比,该算法具有更好的聚类效果。 展开更多
关键词 聚类算法 子空间聚类 高维数据
在线阅读 下载PDF
基于单元区域的高维数据聚类算法 被引量:3
5
作者 谢坤武 毕晓玲 叶斌 《计算机研究与发展》 EI CSCD 北大核心 2007年第9期1618-1623,共6页
高维数据空间维数较高,数据点分布稀疏、密度平均,从中发现数据聚类比较困难,而用基于距离的方法进行高维数据聚类,维数的增多会使得计算对象间距离的时间开销增大.CAHD(clustering algorithmof high-di mensional data)算法首先采用双... 高维数据空间维数较高,数据点分布稀疏、密度平均,从中发现数据聚类比较困难,而用基于距离的方法进行高维数据聚类,维数的增多会使得计算对象间距离的时间开销增大.CAHD(clustering algorithmof high-di mensional data)算法首先采用双向搜索策略在指定的n维空间或其子空间上发现数据点密集的单元区域,然后采用逐位与的方法为这些密集单元区域进行聚类分析.双向搜索策略能够有效地减少搜索空间,从而提高算法效率,同时,聚类密集单元区域只用到逐位与和位移两种机器指令,使得算法效率得到进一步提高.算法CAHD可以有效地处理高维数据的聚类问题.基于数据集的实验表明,算法具有很好的有效性. 展开更多
关键词 数据挖掘 聚类算法 高维数据 单元区域 位运算
在线阅读 下载PDF
局部显著单元高维聚类算法 被引量:1
6
作者 宗瑜 李明楚 +1 位作者 徐贯东 张彦春 《电子与信息学报》 EI CSCD 北大核心 2010年第11期2707-2712,共6页
以等宽或随机宽度网格密度单元为基础的高维聚类算法不能保证复杂数据集中的聚类结果的质量。该文在核密度估计和空间统计理论的基础上,给出一种基于局部显著单元的高维聚类算法来处理复杂数据的高维聚类问题。该方法以局部核密度估计... 以等宽或随机宽度网格密度单元为基础的高维聚类算法不能保证复杂数据集中的聚类结果的质量。该文在核密度估计和空间统计理论的基础上,给出一种基于局部显著单元的高维聚类算法来处理复杂数据的高维聚类问题。该方法以局部核密度估计和空间统计理论为基础定义了局部显著单元结构来捕获局部数据分布;设计了能快速发现覆盖数据分布的局部显著区域的贪婪算法;对具有相同属性子集的局部显著单元执行Single-linkage算法发现其中的聚类结果。实验结果表明,以局部显著单元为基础的高维聚类算法能够发现复杂数据集中隐含的高质量聚类结果。 展开更多
关键词 聚类分析 高维聚类算法 核密度估计 局部显著单元
在线阅读 下载PDF
基于特征选择的统计最优样本大小算法 被引量:3
7
作者 邓杰 钱雪忠 +1 位作者 钱恒 吴秦 《计算机应用研究》 CSCD 北大核心 2014年第12期3535-3538,3549,共5页
针对统计最优样本大小算法在确定大数据集,尤其是高维数据集抽样样本大小时的执行效率较低,以及高维数据集中每一维属性的重要性不同且可能存在冗余属性,提出一种基于特征选择的统计最优样本大小算法。该算法基于熵理论,通过构造一个基... 针对统计最优样本大小算法在确定大数据集,尤其是高维数据集抽样样本大小时的执行效率较低,以及高维数据集中每一维属性的重要性不同且可能存在冗余属性,提出一种基于特征选择的统计最优样本大小算法。该算法基于熵理论,通过构造一个基于对象间相似度的熵度量方法来评估特征重要性,然后根据设计的一种挑选特征的标准获得重要的特征子集,最后在该特征子集上执行统计最优样本大小算法。实验结果表明,改进后算法得到的样本大小抽取的样本集能够在聚类算法中得到较高的准确率,同时也较明显地降低了算法的执行时间,从而验证了改进后的算法是有效可行的。 展开更多
关键词 统计最优样本大小算法 高维数据集 特征选择 聚类
在线阅读 下载PDF
基于遗传算法的高维数据模糊聚类 被引量:2
8
作者 王宝文 阎俊梅 +1 位作者 刘文远 石岩 《计算机工程与应用》 CSCD 北大核心 2007年第16期191-192,221,共3页
提出了一种基于遗传算法的高维数据模糊聚类方法。引入了一个模糊非相似矩阵来表示高维样本之间的非相似程度,并将高维样本初始化到二维平面。利用遗传算法进行迭代优化二维样本的坐标值,实现二维样本之间的欧氏距离向样本间的模糊非相... 提出了一种基于遗传算法的高维数据模糊聚类方法。引入了一个模糊非相似矩阵来表示高维样本之间的非相似程度,并将高维样本初始化到二维平面。利用遗传算法进行迭代优化二维样本的坐标值,实现二维样本之间的欧氏距离向样本间的模糊非相似度的趋近,使高维样本映射到二维平面。最后将得到的最优的二维样本利用模糊C-均值聚类(FCM)算法聚类,克服了聚类有效性对高维样本空间分布的依赖。实验仿真表明利用该方法有较好的聚类效果,且比用FCM算法直接聚类收敛速度快。 展开更多
关键词 模糊聚类 模糊非相似矩阵 遗传算法 高维数据
在线阅读 下载PDF
考虑数据排序的改进CABOSFV聚类 被引量:2
9
作者 武森 王静 谭一松 《计算机工程与应用》 CSCD 北大核心 2011年第34期127-129,共3页
CABOSFV是基于稀疏特征进行高维数据聚类的高效算法,但算法的聚类质量受数据输入顺序的影响。针对此问题,提出考虑数据排序的改进CABOSFV聚类(CABOSFV_CS),通过定义稀疏性指数来描述数据的稀疏特征,并按照稀疏性指数升序对数据进行排序... CABOSFV是基于稀疏特征进行高维数据聚类的高效算法,但算法的聚类质量受数据输入顺序的影响。针对此问题,提出考虑数据排序的改进CABOSFV聚类(CABOSFV_CS),通过定义稀疏性指数来描述数据的稀疏特征,并按照稀疏性指数升序对数据进行排序以改进CABOSFV算法的聚类质量。采用UCI基准数据集进行实验,结果表明与传统的CABOSFV算法相比,CABOSFV_CS有效地提高了聚类准确率。 展开更多
关键词 CABOSFV算法 高维数据 稀疏特征 聚类
在线阅读 下载PDF
基于单元区域的高维数据聚类算法 被引量:1
10
作者 谢坤武 胡俊鹏 《计算机工程》 CAS CSCD 北大核心 2008年第10期101-102,107,共3页
提出一种高维数据集合聚类算法(CAHD)。采用双向搜索策略在指定的n维空间或其子空间上发现数据点密集的单元区域,采用逐位相与的方法为这些密集单元区域聚类。双向搜索策略能够有效地减少搜索空间,提高算法效率,聚类密集单元区域只用到... 提出一种高维数据集合聚类算法(CAHD)。采用双向搜索策略在指定的n维空间或其子空间上发现数据点密集的单元区域,采用逐位相与的方法为这些密集单元区域聚类。双向搜索策略能够有效地减少搜索空间,提高算法效率,聚类密集单元区域只用到逐位与和位移2种机器指令。实验结果表明,在发现的类数量相同的情况下,CAHD算法的运行时间比其他算法减少30%。 展开更多
关键词 聚类算法 高维数据 单元
在线阅读 下载PDF
基于神经网络树和人工蜂群优化的数据聚类 被引量:6
11
作者 吉珊珊 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2021年第1期119-127,共9页
针对高维数据引起的“维数灾难”问题,设计了一种基于神经网络树和人工蜂群优化的高维数据聚类算法.首先,设计了改进的二元人工蜂群优化算法,以封装式方法最大化径向基函数网络的准确率,以过滤式方法最小化特征的冗余度;然后,基于每个... 针对高维数据引起的“维数灾难”问题,设计了一种基于神经网络树和人工蜂群优化的高维数据聚类算法.首先,设计了改进的二元人工蜂群优化算法,以封装式方法最大化径向基函数网络的准确率,以过滤式方法最小化特征的冗余度;然后,基于每个特征子集的样本集训练径向基函数网络,构建以径向基函数网络为节点的神经树;最终,采用门网络将连接的类簇分离,获得最终的聚类结果.基于高维数据集和低维数据集均完成了仿真实验,结果表明本算法对于高维数据集实现了较高的聚类准确率. 展开更多
关键词 高维数据 神经网络树 人工蜂群优化 聚类算法 特征选择
在线阅读 下载PDF
快速识别密度骨架的聚类算法 被引量:5
12
作者 邱保志 唐雅敏 《计算机应用》 CSCD 北大核心 2017年第12期3482-3486,共5页
针对如何快速寻找密度骨架、提高高维数据聚类准确性的问题,提出一种快速识别高密度骨架的聚类(ECLUB)算法。首先,在定义了对象局部密度的基础上,根据互k近邻一致性及近邻点局部密度关系,快速识别出高密度骨架;然后,对未分配的低密度点... 针对如何快速寻找密度骨架、提高高维数据聚类准确性的问题,提出一种快速识别高密度骨架的聚类(ECLUB)算法。首先,在定义了对象局部密度的基础上,根据互k近邻一致性及近邻点局部密度关系,快速识别出高密度骨架;然后,对未分配的低密度点依据邻近关系进行划分,得到最终聚类。人工合成数据集及真实数据集上的实验验证了所提算法的有效性,在Olivetti Face数据集上的聚类结果显示,ECLUB算法的调整兰德系数(ARI)和归一化互信息(NMI)分别为0.877 9和0.962 2。与经典的基于密度的聚类算法(DBSCAN)、密度中心聚类算法(CFDP)以及密度骨架聚类算法(CLUB)相比,所提ECLUB算法效率更高,且对于高维数据聚类准确率更高。 展开更多
关键词 聚类算法 高维数据 K近邻 密度骨架 局部密度
在线阅读 下载PDF
一种高维数据聚类遗传算法 被引量:1
13
作者 孙浩军 熊琅环 《计算机工程与科学》 CSCD 北大核心 2010年第8期94-97,共4页
聚类分析是数据挖掘中的一个重要研究课题。在许多实际应用中,聚类分析的数据往往具有很高的维度,例如文档数据、基因微阵列等数据可以达到上千维,而在高维数据空间中,数据的分布较为稀疏。受这些因素的影响,许多对低维数据有效的经典... 聚类分析是数据挖掘中的一个重要研究课题。在许多实际应用中,聚类分析的数据往往具有很高的维度,例如文档数据、基因微阵列等数据可以达到上千维,而在高维数据空间中,数据的分布较为稀疏。受这些因素的影响,许多对低维数据有效的经典聚类算法对高维数据聚类常常失效。针对这类问题,本文提出了一种基于遗传算法的高维数据聚类新方法。该方法利用遗传算法的全局搜索能力对特征空间进行搜索,以找出有效的聚类特征子空间。同时,为了考察特征维在子空间聚类中的特征,本文设计出一种基于特征维对子空间聚类贡献率的适应度函数。人工数据、真实数据的实验结果以及与k-means算法的对比实验证明了该方法的可行性和有效性。 展开更多
关键词 高维数据聚类 遗传算法 特征子空间
在线阅读 下载PDF
基于最大频繁项集的聚类算法 被引量:1
14
作者 张伟 张泽洪 《江南大学学报(自然科学版)》 CAS 2007年第3期288-292,共5页
鉴于高维数据的稀疏性和分类数据特点,探讨了专门针对高维分类数据的聚类方法.首先将原始数据集转换成频繁项集,再通过改造频繁模式树以及给出的剪切策略,挖掘出事务的最大频繁项集,并基于最大频繁项集(MFI)的两个属性,将具有相同MFI的... 鉴于高维数据的稀疏性和分类数据特点,探讨了专门针对高维分类数据的聚类方法.首先将原始数据集转换成频繁项集,再通过改造频繁模式树以及给出的剪切策略,挖掘出事务的最大频繁项集,并基于最大频繁项集(MFI)的两个属性,将具有相同MFI的对象归于一类,由此提出了基于最大频繁项集的聚类算法.通过对分类数据集的实验,表明该算法具有相当的稳定性、健壮性和有效性. 展开更多
关键词 高维分类数据 最大频繁项集 频繁模式树 投影聚类算法
在线阅读 下载PDF
拓展集合差异度高维数据聚类
15
作者 武森 叶俞飞 俞晓莉 《计算机应用研究》 CSCD 北大核心 2011年第9期3253-3255,共3页
提出度量多个集合之间总体差异程度的拓展集合差异度及相关定理,并给出一种新的解决分类属性高维数据聚类问题的CAESD算法。基于拓展集合差异度及拓展集合特征向量,在CABOSFV_C聚类的基础上通过两阶段聚类完成全部聚类过程。采用UCI数... 提出度量多个集合之间总体差异程度的拓展集合差异度及相关定理,并给出一种新的解决分类属性高维数据聚类问题的CAESD算法。基于拓展集合差异度及拓展集合特征向量,在CABOSFV_C聚类的基础上通过两阶段聚类完成全部聚类过程。采用UCI数据集与K-modes及其改进算法、CABOSFV_C算法进行比较实验,结果表明CAESD算法具有较高的聚类正确率。 展开更多
关键词 高维数据聚类 CABOSFV_C算法 拓展集合差异度 CAESD算法
在线阅读 下载PDF
数据挖掘空间聚类 被引量:5
16
作者 柳彦平 王文杰 谈恒贵 《计算机工程与应用》 CSCD 北大核心 2005年第35期173-176,196,共5页
聚类分析在数据挖掘领域中得到了广泛的应用,对空间数据的聚类是其中的一个重要研究方向。文章提出了对空间数据聚类的6个标准,并基于这6个标准对一些传统的空间数据聚类算法作了分析比较。在分析的基础上指出没有一种老的算法能同时处... 聚类分析在数据挖掘领域中得到了广泛的应用,对空间数据的聚类是其中的一个重要研究方向。文章提出了对空间数据聚类的6个标准,并基于这6个标准对一些传统的空间数据聚类算法作了分析比较。在分析的基础上指出没有一种老的算法能同时处理大量数据点、高维数据和多噪声的问题。接着对近年来改进或创新的聚类算法作了简要分析,并对未来发展方向进行了简要展望,目的主要是便于研究者全面了解和掌握空间数据聚类的现有算法,发现更高性能的聚类算法,也使用户能方便快速地找到适合特定问题的聚类方法。 展开更多
关键词 数据挖掘 空间数据 聚类算法 可伸缩性 高维数据
在线阅读 下载PDF
稀疏谱聚类算法在高维数据上的应用 被引量:3
17
作者 徐雪丽 赵学靖 《中国科学技术大学学报》 CAS CSCD 北大核心 2017年第4期311-319,共9页
提出一种新的稀疏谱聚类算法——基于PAM算法的HSSPAM聚类(high-dimensional sparse spectral clustering based on partitioning around medoids).该算法先用高相关系数过滤及主成分分析降维方法以有效减小甚至消除维度灾难对高维数据... 提出一种新的稀疏谱聚类算法——基于PAM算法的HSSPAM聚类(high-dimensional sparse spectral clustering based on partitioning around medoids).该算法先用高相关系数过滤及主成分分析降维方法以有效减小甚至消除维度灾难对高维数据处理的影响,再采用Minkowski距离指数变换函数及稀疏化算法来构建分块对角矩阵以重新解释样本之间的相似度;然后构造新颖的拉普拉斯矩阵以实现进一步压缩数据矩阵,进而结合partitioning around medoids(PAM)算法取代传统谱聚类中的K-means算法对特征向量聚类以提高算法的聚类稳定性;最后引入高维基因数据设计了实验,并以不同的聚类评价指标来衡量该研究算法的聚类质量,实验结果表明,新算法能够更精确、更稳定地对基因数据聚类. 展开更多
关键词 高维数据聚类 稀疏谱聚类算法 降维方法 分块对角矩阵 聚类评价指标
在线阅读 下载PDF
面向高维特征缺失数据的 K 最近邻插补子空间聚类算法 被引量:8
18
作者 乔永坚 刘晓琳 白亮 《计算机应用》 CSCD 北大核心 2022年第11期3322-3329,共8页
针对高维特征缺失数据在聚类过程中面临的因数据高维引发的维度灾难问题和数据特征缺失导致的样本间有效距离计算失效问题,提出一种面向高维特征缺失数据的K最近邻(KNN)插补子空间聚类算法KISC。首先,利用高维特征缺失数据的子空间下的... 针对高维特征缺失数据在聚类过程中面临的因数据高维引发的维度灾难问题和数据特征缺失导致的样本间有效距离计算失效问题,提出一种面向高维特征缺失数据的K最近邻(KNN)插补子空间聚类算法KISC。首先,利用高维特征缺失数据的子空间下的近邻关系对原始空间下的特征缺失数据进行KNN插补;然后,利用多次迭代矩阵分解和KNN插补获得数据最终可靠的子空间结构,并在该子空间结构进行聚类分析。在6个图像数据集原始空间的聚类结果表明,相较于经过插补后直接进行聚类的对比算法,KISC算法聚类效果更好,说明子空间结构能够更加容易且有效地识别数据的潜在聚类结构;在6个高维数据集子空间下的聚类结果显示,KISC算法在各个数据集的聚类性能均优于对比算法,且在大多数据集上取得了最优的聚类精确度(ACC)和标准互信息(NMI)。KISC算法能够更加有效地处理高维特征缺失数据,提高算法的聚类性能。 展开更多
关键词 高维数据 特征缺失 插补算法 子空间结构 聚类
在线阅读 下载PDF
具有抗噪性能适用高维数据的增量式聚类算法 被引量:10
19
作者 邵俊健 王士同 《计算机科学与探索》 CSCD 北大核心 2019年第9期1553-1566,共14页
针对含有噪声的高维数据的聚类问题,提出一种使用新的距离度量方式的增量式聚类算法ANFCM(c+p)。由于传统的模糊C均值聚类算法对初始化聚类中心比较敏感,所提出的聚类算法将单程FCM的增量机制(称为SpFCM)与FCPM中使用的初始化聚类中心... 针对含有噪声的高维数据的聚类问题,提出一种使用新的距离度量方式的增量式聚类算法ANFCM(c+p)。由于传统的模糊C均值聚类算法对初始化聚类中心比较敏感,所提出的聚类算法将单程FCM的增量机制(称为SpFCM)与FCPM中使用的初始化聚类中心的策略相结合,即将先前数据块的聚类中心附近的几个样本点添加到下一个数据块进行聚类,以避免FCM对噪声的敏感性。此外,所提出的聚类算法使用一种新的改进后的距离度量的同时,使用修正后的约束条件和目标函数。通过以上改进,可以有效区分已知类和未知类在算法中的不同影响程度,并加强类之间的相互影响程度。实验结果表明,该算法对高维噪声数据具有很好的聚类效果和鲁棒性。 展开更多
关键词 高斯噪声 增量式聚类算法 距离度量 高维数据 FCPM算法
在线阅读 下载PDF
基于深度信念网络的K-means聚类算法研究 被引量:13
20
作者 杨慧婷 杨文忠 +1 位作者 殷亚博 许超英 《现代电子技术》 北大核心 2019年第8期145-150,共6页
针对传统K-means聚类算法对高维非线性数据聚类效果不佳、聚类时间消耗大的问题,文中对高维数据的预处理进行研究,提出一种基于深度信念网络(DBN)的K-means聚类算法(DBNOK)。此算法首先使用多层受限玻尔兹曼机(RBM)对数据进行特征学习,... 针对传统K-means聚类算法对高维非线性数据聚类效果不佳、聚类时间消耗大的问题,文中对高维数据的预处理进行研究,提出一种基于深度信念网络(DBN)的K-means聚类算法(DBNOK)。此算法首先使用多层受限玻尔兹曼机(RBM)对数据进行特征学习,并将学习到的隐含特征进行K-means相关参数和初始聚类中心进行交叉迭代优化。用DBNOK算法分别在低维数据集和高维数据集上进行实验,结果表明,DB-NOK算法聚类准确率优于标准的K-means算法和模糊均值聚类(FCM)算法。 展开更多
关键词 K-MEANS算法 深度信念网络 受限玻尔兹曼机 高维数据 聚类分析 FCM算法
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部