This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signa...This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signal parameters. This method is capable of recognizing the MIMO radar signal as well as discriminating it from single-carrier signal adopted by conventional radar. Meanwhile, the sub-carrier number of the none-coding MIMO radar signal is estimated. Extensive simulations are carried out in different operating conditions. Simulation results prove the feasibility and indicate that the recognition probability could reach over 90% when the value of SNR is above 0 dB.展开更多
在频域应用高阶统计量(High order statistics,HOS),提出一种基于幅度谱HOS新特征的语音端点检测(Voice activity detection,VAD)算法。算法利用相邻帧获取当前帧的统计信息,并用幅度谱构造独立零均值高斯随机序列,通过计算此序列的归...在频域应用高阶统计量(High order statistics,HOS),提出一种基于幅度谱HOS新特征的语音端点检测(Voice activity detection,VAD)算法。算法利用相邻帧获取当前帧的统计信息,并用幅度谱构造独立零均值高斯随机序列,通过计算此序列的归一化偏度来得到HOS特征。新特征利用了噪声的长时平稳特性和无序性的先验信息,借用语音生成模型来分析噪声模型,并通过合理的假定,提取潜藏在幅度谱中的高斯信息。因此相比传统HOS特征只能用于高斯或准高斯白噪声检测,幅度谱HOS适用范围扩展到包括有色噪声在内的所有平稳随机噪声。同时新特征表现出许多优异的特性,如:平稳噪声的特征值趋近于零;语音间隙噪声段和语音结束时呈现出负峰特性等。利用这些特性可以建立适用于不同类型、不同信噪比、且具有随机切入点的强鲁棒性能的VAD算法。文章详细阐述了新特征的原理以及特性,并结合判决准则构造了一个简单的VAD算法。实验结果表明,对于平稳噪声基于幅度谱HOS的VAD算法,在检测的准确性和算法鲁棒性的综合性能上优于基于传统特征的算法。展开更多
文摘提出一种基于符号高阶统计量(HOS,high-order statistics)的MPSK调制信道衰落系数盲估计算法。针对平坦慢衰落信道模型,首先分析了MPSK调制符号高阶统计量特征,证明了MPSK调制符号的M次方符号的值是唯一的,而当1≤M′<M时,调制符号的M′次方符号在复平面上是对称分布的;之后利用此特征推导出MPSK调制阶数、初始相位和衰落系数估计算法。仿真实验表明,信噪比高于12 d B条件下,HOS算法估计性能与目前平坦慢衰落信道盲估计的主流方法 Lloyd-Max算法相同,而算法复杂度为Lloyd-Max算法的1/50,并且在接收样本符号较少的条件下HOS算法的均方误差曲线收敛于最小二乘估计理论下界。
基金supported by the Foundation of Chinese People’s Liberation Army General Equipment Department(41101020303)
文摘This paper presents a joint high order statistics (HOS) and signal-to-noise ratio (SNR) algorithm for the recognition of multiple-input multiple-output (MIMO) radar signal without a priori knowledge of the signal parameters. This method is capable of recognizing the MIMO radar signal as well as discriminating it from single-carrier signal adopted by conventional radar. Meanwhile, the sub-carrier number of the none-coding MIMO radar signal is estimated. Extensive simulations are carried out in different operating conditions. Simulation results prove the feasibility and indicate that the recognition probability could reach over 90% when the value of SNR is above 0 dB.
文摘在频域应用高阶统计量(High order statistics,HOS),提出一种基于幅度谱HOS新特征的语音端点检测(Voice activity detection,VAD)算法。算法利用相邻帧获取当前帧的统计信息,并用幅度谱构造独立零均值高斯随机序列,通过计算此序列的归一化偏度来得到HOS特征。新特征利用了噪声的长时平稳特性和无序性的先验信息,借用语音生成模型来分析噪声模型,并通过合理的假定,提取潜藏在幅度谱中的高斯信息。因此相比传统HOS特征只能用于高斯或准高斯白噪声检测,幅度谱HOS适用范围扩展到包括有色噪声在内的所有平稳随机噪声。同时新特征表现出许多优异的特性,如:平稳噪声的特征值趋近于零;语音间隙噪声段和语音结束时呈现出负峰特性等。利用这些特性可以建立适用于不同类型、不同信噪比、且具有随机切入点的强鲁棒性能的VAD算法。文章详细阐述了新特征的原理以及特性,并结合判决准则构造了一个简单的VAD算法。实验结果表明,对于平稳噪声基于幅度谱HOS的VAD算法,在检测的准确性和算法鲁棒性的综合性能上优于基于传统特征的算法。