期刊文献+
共找到395篇文章
< 1 2 20 >
每页显示 20 50 100
SVM+BiHMM:基于统计方法的元数据抽取混合模型 被引量:27
1
作者 张铭 银平 +1 位作者 邓志鸿 杨冬青 《软件学报》 EI CSCD 北大核心 2008年第2期358-368,共11页
提出了一种SVM+BiHMM的混合元数据自动抽取方法.该方法基于SVM(support vector machine)和二元HMM(bigram HMM(hidden Markov model),简称BiHMM)理论.二元HMM模型BiHMM在保持模型结构不变的前提下,通过区分首发概率和状态内部发射概率,... 提出了一种SVM+BiHMM的混合元数据自动抽取方法.该方法基于SVM(support vector machine)和二元HMM(bigram HMM(hidden Markov model),简称BiHMM)理论.二元HMM模型BiHMM在保持模型结构不变的前提下,通过区分首发概率和状态内部发射概率,修改了HMM发射概率计算模型.在SVM+BiHMM复合模型中,首先根据规则把论文粗分为论文头、正文以及引文部分,然后建立SVM模型把文本块划分为元数据子类,接着采用Sigmoid双弯曲函数把SVM分类结果用于拟合调整BiHMM模型的单词发射概率,最后用复合模型进行元数据抽取.SVM方法有效考虑了块间联系,BiHMM模型充分考虑了单词在状态内部的位置信息,二者的元数据抽取结果得到了很好的互补和修正,实验评测结果表明,SVM+BiHMM算法的抽取效果优于其他方法. 展开更多
关键词 元数据抽取 基于规则的信息抽取 支持向量机 隐马尔科夫模型 二元 hmm模型
在线阅读 下载PDF
基于HMM方法的银行票据自动识别 被引量:5
2
作者 王贵新 汪同庆 +3 位作者 宛西原 刘建胜 李建平 居琰 《计算机研究与发展》 EI CSCD 北大核心 2003年第4期544-549,共6页
利用隐态马尔可夫模型 (HMMs) ,对银行票据中金额的大小写数据识别问题进行了研究 主要内容包括建立新颖的文字分割算法 ;设计HMM训练和识别算法 在HMM系统中 ,将使用频率比较高的手写体错别字和同音字作为不同的字符类来处理 ;同时在... 利用隐态马尔可夫模型 (HMMs) ,对银行票据中金额的大小写数据识别问题进行了研究 主要内容包括建立新颖的文字分割算法 ;设计HMM训练和识别算法 在HMM系统中 ,将使用频率比较高的手写体错别字和同音字作为不同的字符类来处理 ;同时在HMM的训练过程中 ,提出了平滑参数的新方法 实验结果表明 ,该方法在实践中是可行的 。 展开更多
关键词 汉字识别 数字识别 hmm方法 银行票据 自动识别 文字分刻算法 大小写数据识别
在线阅读 下载PDF
基于SVM-HMM混合模型的说话人确认 被引量:19
3
作者 忻栋 杨莹春 吴朝晖 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2002年第11期1080-1082,共3页
提出一个文本无关的说话人确认的算法 .该算法将支持向量机 (SVM)的输出通过 Sigm oid函数和高斯模型转化为概率 ,并作为隐式马尔可夫模型 (HMM)中各个隐状态的输出概率 .由于 HMM适于处理连续信号 ,SVM适于处理分类问题 ;同时 ,HMM更... 提出一个文本无关的说话人确认的算法 .该算法将支持向量机 (SVM)的输出通过 Sigm oid函数和高斯模型转化为概率 ,并作为隐式马尔可夫模型 (HMM)中各个隐状态的输出概率 .由于 HMM适于处理连续信号 ,SVM适于处理分类问题 ;同时 ,HMM更多地表达了类别内部的相似性 ,而 SVM则很大程度上反映了类别间的差异 ,因而根据两者不同的侧重点 ,使其组合获得了很好的效果 . 展开更多
关键词 SVM-hmm混合模型 说话人确认 支持向量机 隐式马尔可夫模型 语音信号处理 模式识别
在线阅读 下载PDF
基于小波域HMM模型的稳健多比特图像水印算法 被引量:19
4
作者 张荣跃 倪江群 黄继武 《软件学报》 EI CSCD 北大核心 2005年第7期1323-1332,共10页
稳健性是多比特图像水印的关键问题之一,提出了一种基于小波域隐马尔可夫模型(hiddenMarkovmodel,简称HMM)的多比特图像水印算法,该算法的主要特点为:(1)利用向量HMM模型精确描述图像小波系数间的统计特性,基于此统计模型的水印盲检测... 稳健性是多比特图像水印的关键问题之一,提出了一种基于小波域隐马尔可夫模型(hiddenMarkovmodel,简称HMM)的多比特图像水印算法,该算法的主要特点为:(1)利用向量HMM模型精确描述图像小波系数间的统计特性,基于此统计模型的水印盲检测系统较之传统的相关检测器,在性能上有显著的提升;(2)结合视觉掩盖特性,自适应地调整水印嵌入强度,使之在一定的嵌入强度下,视觉主观失真较小;(3)提出了一种适合隐马尔可夫模型树型结构的多比特数据优化嵌入策略和最大似然检测.数值仿真结果表明,该算法可以较好地利用图像小波域的低频子带以实现较大容量图像水印的嵌入,并在抵抗Stirmark平台攻击,如JPEG压缩、加噪、中值滤波和线性滤波等方面具有很强的稳健性. 展开更多
关键词 多比特水印 hmm模型 小波 稳健性 盲检测
在线阅读 下载PDF
基于HMM的列车轨道占用自动识别算法研究 被引量:12
5
作者 王剑 张辉 +1 位作者 蔡伯根 陈德旺 《铁道学报》 EI CAS CSCD 北大核心 2009年第3期54-58,共5页
在列车运行控制系统中,及时准确地了解列车所在位置事关列车运行安全。在车站,列控系统需要准确了解列车所在股道,以控制两列列车在车站交会或越行。由于车站股道密集,单纯依靠卫星定位系统(GNSS)确定列车所在的股道有较大困难。隐马尔... 在列车运行控制系统中,及时准确地了解列车所在位置事关列车运行安全。在车站,列控系统需要准确了解列车所在股道,以控制两列列车在车站交会或越行。由于车站股道密集,单纯依靠卫星定位系统(GNSS)确定列车所在的股道有较大困难。隐马尔可夫模型(HMM)是广泛应用于语音处理的一种时间序列统计模型,本文将HMM应用到列车股道占用自动识别中,对列车运行轨迹建立HMM,解决了卫星定位系统用于列车定位时列车占用股道的识别问题。对于HMM状态个数、卫星定位输出频率与列车运行速度对识别的影响等做了进一步的研究,得出优化参数。 展开更多
关键词 股道占用识别 列车定位 隐马尔可夫模型 全球导航定位系统
在线阅读 下载PDF
基于量子粒子群优化Volterra时域核辨识的隐Markov模型识别方法 被引量:12
6
作者 李志农 蒋静 +1 位作者 冯辅周 袁振伟 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第12期2693-2698,共6页
将量子粒子群优化算法引入Volterra级数模型的非线性辨识中,并结合隐Markov模型(hidden Markov model,HMM),提出了一种基于量子粒子群优化的Volterra时域核特征提取的HMM识别方法,在提出的方法中,利用量子粒子群优化算法辨识得到的前三... 将量子粒子群优化算法引入Volterra级数模型的非线性辨识中,并结合隐Markov模型(hidden Markov model,HMM),提出了一种基于量子粒子群优化的Volterra时域核特征提取的HMM识别方法,在提出的方法中,利用量子粒子群优化算法辨识得到的前三阶Volterra时域核作为故障特征,输入到各种状态的HMM中,其中,输出概率最大的HMM对应的状态即为设备的当前运行状态。提出的方法克服了传统的基于Volterra模型系统的机械故障诊断要求目标函数连续可导、容易陷入局部最小以及抗干扰能力差等缺陷。最后,将提出的方法应用到旋转机械故障诊断中。实验结果验证了该方法的有效性。 展开更多
关键词 VOLTERRA级数 markov模型(hmm) 量子粒子群优化(QPSO) 故障诊断 模式识别
在线阅读 下载PDF
基于EMD-HMM的BIT间歇故障识别 被引量:16
7
作者 郭明威 倪世宏 朱家海 《振动.测试与诊断》 EI CSCD 北大核心 2012年第3期467-470,518,共4页
针对引起机内测试系统(BIT)虚警的间歇故障,提出了一种基于经验模态分解(EMD)和隐马尔科夫模型(HMM)的间歇故障诊断方法以抑制虚警。首先对原始信号进行EMD分解,选择能量最大的几个固有模式分量函数(IMF)进行特征提取,作为系统状态的观... 针对引起机内测试系统(BIT)虚警的间歇故障,提出了一种基于经验模态分解(EMD)和隐马尔科夫模型(HMM)的间歇故障诊断方法以抑制虚警。首先对原始信号进行EMD分解,选择能量最大的几个固有模式分量函数(IMF)进行特征提取,作为系统状态的观测值;然后将观测值输入到训练好的HMM中进行决策,求取最大似然概率值作为识别结果。结果表明,利用EMD进行特征提取并与HMM方法相结合能很好地分类出各种状态,有效地诊断出间歇故障。 展开更多
关键词 机内测试 虚警 间歇故障 经验模态分解 隐马尔科夫模型
在线阅读 下载PDF
基于HMM的电子设备状态监测与健康评估 被引量:11
8
作者 张继军 马登武 张金春 《系统工程与电子技术》 EI CSCD 北大核心 2013年第8期1692-1696,共5页
为了克服隐马尔科夫模型(hidden Markov model,HMM)在训练时波氏(Baum-Welch,B-W)算法易陷入局部最优解的不足,采用多智能体遗传算法(multi-agent genetic algorithm,MAGA)对其进行参数估计,设计了染色体编码方法和遗传操作方式。利用Vi... 为了克服隐马尔科夫模型(hidden Markov model,HMM)在训练时波氏(Baum-Welch,B-W)算法易陷入局部最优解的不足,采用多智能体遗传算法(multi-agent genetic algorithm,MAGA)对其进行参数估计,设计了染色体编码方法和遗传操作方式。利用Viterbi算法的状态估计和状态回溯能力对温控放大器进行状态监测和健康评估研究,仅需建立一个HMM,大幅度减少了HMM作为分类器使用时的模型训练计算量。仿真结果表明,MAGA优化的HMM具有更好的状态监测性能,采用Viterbi算法得到的状态概率值对设备进行健康评估有效可行。 展开更多
关键词 状态监测 参数估计 隐马尔科夫模型 遗传算法 VITERBI算法
在线阅读 下载PDF
基于HMM和SVM的指纹分类方法 被引量:8
9
作者 王崇文 李见为 陈为民 《电子与信息学报》 EI CSCD 北大核心 2003年第11期1488-1493,共6页
该文提出了指纹分类的一种新型方法:使用指纹编码的基于隐马尔可夫模型(HMM)和支持向量机(SVM)的两级分类,该方法采用FingerCode作为指纹的特征表述,首先用5个伪二维 HMM进行类别初选,确定最可能的两种指纹分类结果,再用相应的 SVM分类... 该文提出了指纹分类的一种新型方法:使用指纹编码的基于隐马尔可夫模型(HMM)和支持向量机(SVM)的两级分类,该方法采用FingerCode作为指纹的特征表述,首先用5个伪二维 HMM进行类别初选,确定最可能的两种指纹分类结果,再用相应的 SVM分类器做最终判决,实验表明,分类性能已经达到或超过目前流行的指纹分类算法,具有一定的实用价值。 展开更多
关键词 hmm SVM 指纹分类 支持向量机 隐马尔可夫模型 指纹编码
在线阅读 下载PDF
基于Contourlet子带能量特征多HMM融合的静脉识别 被引量:6
10
作者 贾旭 薛定宇 +1 位作者 崔建江 刘晶 《电子与信息学报》 EI CSCD 北大核心 2011年第8期1877-1882,共6页
为了准确识别人的身份,该文提出了一种以轮廓波(Contourlet)变换后不同尺度下的子带能量为特征,建立并融合多个隐马尔科夫模型(HMM)的手背静脉识别算法。该算法首先采用了光强可调的近红外阵列光源,通过逐步增加光强来获得手背静脉图像... 为了准确识别人的身份,该文提出了一种以轮廓波(Contourlet)变换后不同尺度下的子带能量为特征,建立并融合多个隐马尔科夫模型(HMM)的手背静脉识别算法。该算法首先采用了光强可调的近红外阵列光源,通过逐步增加光强来获得手背静脉图像序列;而后,将每一静脉图像进行Contourlet变换,并计算不同尺度下每一子带的能量,以3个尺度下子带能量作为特征观测值建立3个HMM;最后,融合3个HMM计算得到的观测值发生概率,将融合结果与阈值作比较,从而完成静脉识别过程。实验结果表明,提出的算法可以使真实匹配与虚假匹配的区分度最大化,与基于特征点或静脉信息融合的识别算法相比,正确识别率得到了提高。 展开更多
关键词 特征提取 静脉识别 轮廓波变换 隐马尔科夫模型(hmm)
在线阅读 下载PDF
基于DPMM-CHMM的机械设备性能退化评估研究 被引量:8
11
作者 季云 王恒 +1 位作者 朱龙彪 刘肖 《振动与冲击》 EI CSCD 北大核心 2017年第23期170-174,共5页
针对传统的HMM模型状态数必须预先设定的不足,提出了一种基于DPMM-CHMM的机械设备性能退化评估方法。该方法利用DPMM模型的自动聚类功能,实现了模型结构根据观测数据的自适应变化和动态调整,获得设备运行过程中的最优退化状态数,并结合C... 针对传统的HMM模型状态数必须预先设定的不足,提出了一种基于DPMM-CHMM的机械设备性能退化评估方法。该方法利用DPMM模型的自动聚类功能,实现了模型结构根据观测数据的自适应变化和动态调整,获得设备运行过程中的最优退化状态数,并结合CHMM良好的分析和建模能力,得到设备退化状态转移路径,实现机械设备运行过程中的退化状态识别和性能评估,并利用滚动轴承全寿命数据进行了应用研究。结果表明,该方法可以有效地识别轴承运行中的不同退化状态,为基于状态的设备维修提供了理论指导。 展开更多
关键词 狄利克雷混合模型 连续隐马尔可夫模型 性能退化评估 滚动轴承
在线阅读 下载PDF
基于TSB-HMM模型的雷达高分辨距离像目标识别方法 被引量:13
12
作者 潘勉 王鹏辉 +2 位作者 杜兰 刘宏伟 保铮 《电子与信息学报》 EI CSCD 北大核心 2013年第7期1547-1554,共8页
针对雷达高分辨距离像(HRRP)的识别问题,该文提出了一种基于时域特征的截断Stick-Breaking过程隐马尔可夫模型(TSB-HMM),并建立了基于TSB-HMM模型的分层识别算法,利用TSB-HMM模型结合时域特征和功率谱特征对HRRP进行分层识别。实测数据... 针对雷达高分辨距离像(HRRP)的识别问题,该文提出了一种基于时域特征的截断Stick-Breaking过程隐马尔可夫模型(TSB-HMM),并建立了基于TSB-HMM模型的分层识别算法,利用TSB-HMM模型结合时域特征和功率谱特征对HRRP进行分层识别。实测数据的实验结果表明,该方法是一种有效的雷达HRRP识别方法,分层识别的算法可极大提高目标的平均识别率。特别是在训练样本数极少的情况下,TSB-HMM模型仍能获得较好的识别性能。 展开更多
关键词 雷达目标识别 高分辨距离像 截断Stick-Breaking隐马尔可夫模型 分层识别
在线阅读 下载PDF
基于改进HMM的文本信息抽取模型 被引量:9
13
作者 梁吉光 田俊华 姜杰 《计算机工程》 CAS CSCD 北大核心 2011年第20期178-179,182,共3页
提出一种基于改进隐马尔可夫模型(HMM)的文本信息抽取模型。给出一个新假设,使用绝对平滑算法对模型参数进行平滑,利用Viterbi算法对观察值序列进行正序和逆序解码,基于N-Gram模型对2次解码结果进行对比消歧,得到较准确的状态序列。实... 提出一种基于改进隐马尔可夫模型(HMM)的文本信息抽取模型。给出一个新假设,使用绝对平滑算法对模型参数进行平滑,利用Viterbi算法对观察值序列进行正序和逆序解码,基于N-Gram模型对2次解码结果进行对比消歧,得到较准确的状态序列。实验结果表明,该信息抽取模型能提高信息抽取的准确率。 展开更多
关键词 隐马尔可夫模型 绝对平滑 观察值 信息抽取 引文信息
在线阅读 下载PDF
基于HMM和优化的PF的数控转台精度衰退模型 被引量:8
14
作者 王刚 陈捷 +1 位作者 洪荣晶 王华 《振动与冲击》 EI CSCD 北大核心 2018年第6期7-13,共7页
针对数控转台精度衰退状态缺乏有效的评估方法的问题,提出一种数控转台重复定位精度衰退趋势预测模型,该模型结合了隐马尔科夫(Hidden Markov Model,HMM)算法和粒子滤波(Particle Filtering,PF)算法,其中粒子滤波算法使用粒子群算法(Par... 针对数控转台精度衰退状态缺乏有效的评估方法的问题,提出一种数控转台重复定位精度衰退趋势预测模型,该模型结合了隐马尔科夫(Hidden Markov Model,HMM)算法和粒子滤波(Particle Filtering,PF)算法,其中粒子滤波算法使用粒子群算法(Particle Swarm Optimization,PSO)优化了初始参数。选择了从数控转台精度衰退加速寿命试验中获得的振动信号作为研究数据。通过聚合经验模态与主成分分析(EEMD-PCA)算法对原始信号降噪,并提取含有故障特征的信号进行信号重构;使用统计特征量作为观察值训练获得HMM模型,对数控转台精度衰减做出早期诊断,并由此获得数控转台精度健康状态指标;使用粒子滤波算法建立数控转台精度衰退预测模型,并预测精度的剩余寿命。在以第50组数据为预测起始点时,预测的剩余寿命为21,实际测量的结果为17,相差4,比较接近。综合分析模型计算与试验测量的结果表明。 展开更多
关键词 数控转台 隐马尔科夫模型 粒子滤波算法 定位精度 剩余寿命
在线阅读 下载PDF
基于模拟退火算法和二阶HMM的Web信息抽取 被引量:7
15
作者 李伟男 李书琴 +2 位作者 景旭 魏露 李新乐 《计算机工程与设计》 CSCD 北大核心 2014年第4期1264-1268,共5页
针对传统隐马尔科夫模型对初值敏感和未考虑历史状态的问题,提出了使用模拟退火算法训练二阶隐马尔科夫模型参数的SA-HMM2。在基于SA-HMM2的Web信息抽取方法中,采用基于视觉的网页分割算法VIPS对网页分块得到状态转移序列,利用提出的SA-... 针对传统隐马尔科夫模型对初值敏感和未考虑历史状态的问题,提出了使用模拟退火算法训练二阶隐马尔科夫模型参数的SA-HMM2。在基于SA-HMM2的Web信息抽取方法中,采用基于视觉的网页分割算法VIPS对网页分块得到状态转移序列,利用提出的SA-HMM2训练算法获取HMM2全局最优模型参数,用改进的Viterbi算法实现了Web信息的抽取。实验结果表明,该方法在平均综合值方面比HMM、GA-HMM分别提高约21%和7%。 展开更多
关键词 WEB信息抽取 隐马尔科夫模型 二阶隐马尔科夫模型 模拟退火算法 基于视觉的网页分割算法
在线阅读 下载PDF
噪声环境中基于HMM模型的语音信号端点检测方法 被引量:12
16
作者 朱杰 韦晓东 《上海交通大学学报》 EI CAS CSCD 北大核心 1998年第10期14-16,共3页
在噪声环境下如何提高语音信号端点检测的准确性是自动语音识别(ASR)研究中的一个重要课题.常用的基于短时能量的端点检测方法对于能量较低的音节或在信噪比较低的环境下,检测性能不够理想.讨论了一种基于HMM模型的语音信号... 在噪声环境下如何提高语音信号端点检测的准确性是自动语音识别(ASR)研究中的一个重要课题.常用的基于短时能量的端点检测方法对于能量较低的音节或在信噪比较低的环境下,检测性能不够理想.讨论了一种基于HMM模型的语音信号端点检测方法.先用训练的方法生成背景噪声和废料的模型,再用Viterbi解码算法对待测信号进行处理,并给出了具体的实现方法.实验测试结果表明,基于HMM的端点检测方法的检测性能接近于人工检测,方法是有效的. 展开更多
关键词 隐马尔可夫模型 端点检测 语音识别 噪声
在线阅读 下载PDF
基于HMM校正与神经网络延拓的EMD端点效应抑制方法 被引量:10
17
作者 孟宗 闫晓丽 王赛 《中国机械工程》 EI CAS CSCD 北大核心 2015年第14期1920-1925,共6页
针对神经网络延拓方法在抑制经验模态分解的端点效应时存在的延拓数据与真实数据往往存在误差的问题,提出了一种基于HMM校正的方法来减小预测延拓数据误差。首先利用径向基函数(RBF)神经网络预测估计方法对部分原始数据进行估计,同时对... 针对神经网络延拓方法在抑制经验模态分解的端点效应时存在的延拓数据与真实数据往往存在误差的问题,提出了一种基于HMM校正的方法来减小预测延拓数据误差。首先利用径向基函数(RBF)神经网络预测估计方法对部分原始数据进行估计,同时对端点外数据进行预测。然后计算该方法估计的数据与真实数据的误差序列,再用HMM方法建立估计误差序列模型,用以预测延拓后数据的误差。最后用RBF神经网络延拓数据减去HMM预测的误差数据得到新的校正后延拓数据。仿真与实验证明了将HMM预测方法与RBF神经网络数据延拓结合应用到解决端点效应的过程中所得到的延拓数据更接近真实数据,能够更好地解决端点效应问题,提高了经验模态分解精度。 展开更多
关键词 隐马尔科夫模型 误差校正 神经网络 端点效应 经验模态分解
在线阅读 下载PDF
基于乘积HMM的双模态语音识别方法 被引量:8
18
作者 赵晖 顾亚强 唐朝京 《计算机工程》 CAS CSCD 北大核心 2010年第8期7-9,共3页
针对噪声环境中的语音识别,提出一种用于双模态语音识别的乘积隐马尔可夫模型(HMM)。在独立训练音频HMM和视频HMM的基础上,建立二维训练模型,表征音频流和视频流之间的异步特性。引入权重系数,根据不同噪声环境自适应调整音频流与视频... 针对噪声环境中的语音识别,提出一种用于双模态语音识别的乘积隐马尔可夫模型(HMM)。在独立训练音频HMM和视频HMM的基础上,建立二维训练模型,表征音频流和视频流之间的异步特性。引入权重系数,根据不同噪声环境自适应调整音频流与视频流的权重。实验结果证明,与其他双模态语音识别方法相比,该方法的识别性能更高。 展开更多
关键词 双模态语音识别 乘积隐马尔可夫模型 异步特性 权重系数
在线阅读 下载PDF
基于HMM的车辆行驶状态实时判别方法研究 被引量:8
19
作者 王相海 丛志环 +1 位作者 方玲玲 秦钜鳌 《自动化学报》 EI CSCD 北大核心 2013年第12期2131-2142,共12页
对交通视频车辆轨迹时序特征下的车辆行驶状态进行研究,提出了一种基于隐马尔科夫模型(Hidden Markov model,HMM)的车辆行驶状态实时判别方法.首先对轨迹序列进行了基于轨迹长度的去不完整轨迹序列、对车辆轨迹点序列的线性平滑滤波和... 对交通视频车辆轨迹时序特征下的车辆行驶状态进行研究,提出了一种基于隐马尔科夫模型(Hidden Markov model,HMM)的车辆行驶状态实时判别方法.首先对轨迹序列进行了基于轨迹长度的去不完整轨迹序列、对车辆轨迹点序列的线性平滑滤波和最小二乘线性拟合的预处理操作,保证了所获得轨迹序列的有效性;其次,提出一种基于车辆运行轨迹点序列方向角的车辆轨迹特征值表示方法和基于方向角区间划分的HMM观察值序列生成方法,该方法以方向角的区间变化来区分不同轨迹模式的特征;最后,采用多观察值序列下的Baum-Welch算法训练得到相关交通场景轨迹模式类的最优HMM参数,并通过实时获取车辆行驶轨迹段与相应模型的匹配,实现对车辆行驶状态的实时判别.仿真实验验证了本文方法的有效性和稳定性. 展开更多
关键词 视频车辆轨迹 隐马尔科夫模型 方向角 行驶状态 实时判别
在线阅读 下载PDF
基于适应加权非对称AdaBoost HMM的三维模型分类算法 被引量:4
20
作者 刘小明 尹建伟 +1 位作者 冯志林 董金祥 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第8期1300-1305,共6页
针对三维模型的分类问题,提出了一种适应性加权非对称AdaBoost隐马尔克夫模型(HMM)分类算法.算法中提出了由三维模型表面的绝对法向量表示的两种新特征,将经过归一化和姿态调整的三维模型划分为若干部分,各部分对应HMM的一个状态,对各... 针对三维模型的分类问题,提出了一种适应性加权非对称AdaBoost隐马尔克夫模型(HMM)分类算法.算法中提出了由三维模型表面的绝对法向量表示的两种新特征,将经过归一化和姿态调整的三维模型划分为若干部分,各部分对应HMM的一个状态,对各部分提取特征并用主成分分析(PCA)降维,对模型的4种特征对应的弱分类器使用非对称AdaBoost算法进行boosting.HMM的结构及参数初始值由模型姿势调整的可能形式及观测顺序确定,训练过程中参数用期望最大化方法计算,最后使用加权相似度计算对三维模型分类.分析及试验结果表明,与基于分布函数的分类算法相比,该算法明显提高了正确率.适应性加权后,分类正确率可进一步提高. 展开更多
关键词 三维模型分类 隐马尔克夫模型 非对称Adaboost
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部