Pull-based P2P live streaming is a promising solution for the large scale streaming systems, like PPStream, PPlive, due to its high scalability, low cost and high resilience. However, they usually suffer from bad dela...Pull-based P2P live streaming is a promising solution for the large scale streaming systems, like PPStream, PPlive, due to its high scalability, low cost and high resilience. However, they usually suffer from bad delay performance. In this paper, we seek to improve the delay performance under ensuring video display quality stemming from chunk scheduling. And so we model Pull-based chunk scheduling problem as a multi-objective optimization problem to minimize the video delay and maximize video display quality in the environment of heterogeneous upload bandwidths, heterogeneous and dynamic propagation delays. Finally we put up with a greedy Pull-based scheduling approach(GPSA) to solve the optimization problem. The evaluation shows GPSA can outperform two classical chunk scheduling approaches and adapt to dynamic variance of propagation delays.展开更多
Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these f...Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these factors depends on tree mycorrhizal associations,whereby large-tree effects may be driven by ectomycorrhizal(EM)trees,diversity effects may be driven by arbuscular mycorrhizal(AM)trees,and environment effects may depend on differential climate and soil preferences of AM and EM trees.To test this hypothesis,we used forest-inventory data consisting of over 80,000 trees from 631 temperate-forest plots(30 m×30 m)across Northeast China to examine how biodiversity(species diversity and ecological uniqueness),large trees(top 1%of tree diameters),and environmental factors(climate and soil nutrients)differently regulate aboveground carbon stocks of AM trees,EM trees,and AM and EM trees combined(i.e.total aboveground carbon stock).We found that large trees had a positive effect on both AM and EM tree carbon stocks.However,biodiversity and environmental factors had opposite effects on AM vs.EM tree carbon stocks.Specifically,the two components of biodiversity had positive effects on AM tree carbon stocks,but negative effects on EM tree carbon stocks.Environmental heterogeneity(mean annual temperature and soil nutrients)also exhibited contrasting effects on AM and EM tree carbon stocks.Consequently,for the total carbon stock,the positive large-tree effect far surpasses the diversity and environment effect.This is mainly because when integrating AM and EM tree carbon stock into total carbon stock,the opposite diversity-effect(also environment-effect)on AM vs.EM tree carbon stock counteracts each other while the consistent positive large-tree effect on AM and EM tree carbon stock is amplified.In summary,this study emphasized a mycorrhizal viewpoint to better understand the determinants of overarching aboveground carbon profile across regional forests.展开更多
基金supported by National Key Basic Research Program of China(973 Program)(2009CB320504)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 60821001)+1 种基金Beijing Municipal Commission of Education to build the project special,Research Fund for the Doctoral Program of Higher Education of China (20090005120012)National Natural Science Foundation (60672121)
文摘Pull-based P2P live streaming is a promising solution for the large scale streaming systems, like PPStream, PPlive, due to its high scalability, low cost and high resilience. However, they usually suffer from bad delay performance. In this paper, we seek to improve the delay performance under ensuring video display quality stemming from chunk scheduling. And so we model Pull-based chunk scheduling problem as a multi-objective optimization problem to minimize the video delay and maximize video display quality in the environment of heterogeneous upload bandwidths, heterogeneous and dynamic propagation delays. Finally we put up with a greedy Pull-based scheduling approach(GPSA) to solve the optimization problem. The evaluation shows GPSA can outperform two classical chunk scheduling approaches and adapt to dynamic variance of propagation delays.
基金supported by the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant ZDBS-LY-DQC019)the National Key Research and Development Program of China(2023YFE0124300)+4 种基金the National Natural Science Foundation of China(32301344)Major Program of Institute of Applied EcologyChinese Academy of Sciences(IAEMP202201)supported by grants from the U.S.National Science Foundation(DEB 2240431)the Seeding Projects for Enabling Excellence and Distinction(SPEED)Program at Washington University in St.Louis。
文摘Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these factors depends on tree mycorrhizal associations,whereby large-tree effects may be driven by ectomycorrhizal(EM)trees,diversity effects may be driven by arbuscular mycorrhizal(AM)trees,and environment effects may depend on differential climate and soil preferences of AM and EM trees.To test this hypothesis,we used forest-inventory data consisting of over 80,000 trees from 631 temperate-forest plots(30 m×30 m)across Northeast China to examine how biodiversity(species diversity and ecological uniqueness),large trees(top 1%of tree diameters),and environmental factors(climate and soil nutrients)differently regulate aboveground carbon stocks of AM trees,EM trees,and AM and EM trees combined(i.e.total aboveground carbon stock).We found that large trees had a positive effect on both AM and EM tree carbon stocks.However,biodiversity and environmental factors had opposite effects on AM vs.EM tree carbon stocks.Specifically,the two components of biodiversity had positive effects on AM tree carbon stocks,but negative effects on EM tree carbon stocks.Environmental heterogeneity(mean annual temperature and soil nutrients)also exhibited contrasting effects on AM and EM tree carbon stocks.Consequently,for the total carbon stock,the positive large-tree effect far surpasses the diversity and environment effect.This is mainly because when integrating AM and EM tree carbon stock into total carbon stock,the opposite diversity-effect(also environment-effect)on AM vs.EM tree carbon stock counteracts each other while the consistent positive large-tree effect on AM and EM tree carbon stock is amplified.In summary,this study emphasized a mycorrhizal viewpoint to better understand the determinants of overarching aboveground carbon profile across regional forests.