期刊文献+
共找到506篇文章
< 1 2 26 >
每页显示 20 50 100
Flow and heat transfer characteristics of regenerative cooling parallel channel
1
作者 JU Yinchao LIU Xiaoyong +1 位作者 XU Guoqiang DONG Bensi 《推进技术》 北大核心 2025年第1期163-171,共9页
Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass rat... Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design. 展开更多
关键词 Regenerative cooling heat transfer Flow resistance ENGINE Parallel channel
在线阅读 下载PDF
Effect of stochastic fracture surface roughness on water flow and heat transfer in fractured rocks
2
作者 LIU Dongdong SONG Wenjie +2 位作者 LU Wei ZHONG Guo YANG Tao 《中国水利水电科学研究院学报(中英文)》 北大核心 2025年第4期449-459,共11页
As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness dis... As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness distribution functions of the Bakhtiary dam site and Oskarshamn/Forsmark mountain were fitted using statistical methods.The COMSOL Multiphysics finite element software was utilized to analyze the effects of fracture roughness distribution types and empirical formulas for fracture hydraulic aperture on the seepage field and temperature field of rock masses.The results show that:(1)The fracture roughness at the Bakhtiary dam site and Oskarshamn/Forsmark mountain follows lognormal and normal distributions,respectively;(2)For rock masses with the same expected value and standard deviation of fracture roughness,the outflow from rock masses with lognormal distribution of fracture roughness is significantly larger than that of rock masses with normal distribution of fracture roughness;(3)The fracture hydraulic aperture,outflow,and cold front distance of the Li and Jiang model are significantly larger than those of the Barton model;(4)The outflow,hydraulic pressure distribution,and temperature distribution of the Barton model are more sensitive to the fracture roughness distribution type than those of the Li and Jiang model. 展开更多
关键词 discrete fracture networks roughness distribution hydro-mechanical aperture model seepage and heat transfer
在线阅读 下载PDF
The regulation of ferrocene-based catalysts on heat transfer in highpressure combustion of ammonium perchlorate/hydroxyl-terminated polybutadiene/aluminum composite propellants 被引量:1
3
作者 Jinchao Han Songqi Hu Linlin Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期174-186,共13页
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i... The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures. 展开更多
关键词 AP/HTPB/Al propellants heat transfer High-pressure combustion Ferrocene-based catalysts Pressure exponent
在线阅读 下载PDF
Numerical study of directional heat transfer in composite materials via controllable carbon fiber distribution 被引量:1
4
作者 SHI Lei HUANG Cun-wen +5 位作者 YE Jian-ling WEN Shuang LIU Su-ping LI Fen-qiang ZHOU Tian SUN Zhi-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1945-1955,共11页
Carbon fiber reinforced polyamide 12(CF/PA12),a new material renowned for its excellent mechanical and thermal properties,has drawn significant industry attention.Using the steady-state research to heat transfer,a ser... Carbon fiber reinforced polyamide 12(CF/PA12),a new material renowned for its excellent mechanical and thermal properties,has drawn significant industry attention.Using the steady-state research to heat transfer,a series of simulations to investigate the heat transfer properties of CF/PA12 were conducted in this study.Firstly,by building two-and three-dimensional models,the effects of the porosity,carbon fiber content,and arrangement on the heat transfer of CF/PA12 were examined.A validation of the simulation model was carried out and the findings were consistent with those of the experiment.Then,the simulation results using the above models showed that within the volume fraction from 0% to 28%,the thermal conductivity of CF/PA12 increased greatly from 0.0242 W/(m·K)to 10.8848 W/(m·K).The increasing porosity had little influence on heat transfer characteristic of CF/PA12.The direction of the carbon fiber arrangement affects the heat transfer impact,and optimal outcomes were achieved when the heat flow direction was parallel to the carbon fiber.This research contributes to improving the production methods and broadening the application scenarios of composite materials. 展开更多
关键词 heat transfer thermal conductivity carbon fiber-based composite
在线阅读 下载PDF
Heat transfer of copper/water nanofluid flow through converging-diverging channel 被引量:12
5
作者 Mohamed Rafik SARI Mohamed KEZZAR Rachid ADJABI 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期484-496,共13页
The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temper... The main objective of this work is to investigate analytically the steady nanofluid flow and heat transfer characteristics between nonparallel plane walls. Using appropriate transformations for the velocity and temperature, the basic nonlinear partial differential equations are reduced to the ordinary differential equations. Then, these equations have been solved analytically and numerically for some values of the governing parameters, Reynolds number, Re, channel half angle, α, Prandtl number, Pr, and Eckert number, Ec, using Adomian decomposition method and the Runge-Kutta method with mathematic package. Analytical and numerical results are searched for the skin friction coefficient, Nusselt number and the velocity and temperature profiles. It is found on one hand that the Nusselt number increases as Eckert number or channel half-angle increases, but it decreases as Reynolds number increases. On the other hand, it is also found that the presence of Cu nanoparticles in a water base fluid enhances heat transfer between nonparallel plane walls and in consequence the Nusselt number increases with the increase of nanoparticles volume fraction. Finally, an excellent agreement between analytical results and those obtained by numerical Runge-Kutta method is highly noticed. 展开更多
关键词 nanofluid flow heat transfer copper nanoparticles inclined walls analytical solution
在线阅读 下载PDF
Effect of friction stir processing on mechanical properties and heat transfer of TIG welded joint of AA6061 and AA7075 被引量:6
6
作者 Husain Mehdi R.S.Mishra 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期715-727,共13页
Tungsten inert gas(TIG) welding is the most commonly used joining process for aluminum alloy for AA6061 and AA7075 which are highly demanded in the aerospace engineering and the automobile sector, but there are some d... Tungsten inert gas(TIG) welding is the most commonly used joining process for aluminum alloy for AA6061 and AA7075 which are highly demanded in the aerospace engineering and the automobile sector, but there are some defects occur during TIG welding like micro-crack, coarse grain structure, and porosity. To improve these defects, the TIG welded joint is processed using friction stir processing(FSP).This paper presents the effect of friction stir processing on TIG welding with filler ER4043 and ER 5356 for dissimilar aluminum alloy AA6061 and AA7075. The mechanical characterization, finite element formulation and mathematical equations of heat transfer of TIG + FSP welded joints are investigated using ANSYS Fluent software by adjusting process parameters of FSP. The results show that the maximum compressive residual stress 73 MPa was obtained at the fusion zone(FZ) of the TIG weldment with filler ER4043, whereas minimum compressive residual stress 37 MPa was obtained at stir zone(SZ) of the TIG+ FSP with filler 5356. The maximum heat flux 5.33 × 106 W/m2 and temperature 515C have observed at tool rotation 1600 rpm with a feed rate of 63 mm/min. These results give a satisfactory measure of confidence in the fidelity of the simulation。 展开更多
关键词 Residual stress TIG+FSW heat transfer Micro-hardness Tensile strength
在线阅读 下载PDF
Numerical simulation of aluminum holding furnace with fluid-solid coupled heat transfer 被引量:9
7
作者 周乃君 周善红 +1 位作者 张家奇 潘青林 《Journal of Central South University》 SCIE EI CAS 2010年第6期1389-1394,共6页
To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mat... To predict three-dimensional temperature distribution of molten aluminum and its influencing factors inside an industrial aluminum holding furnace,a fluid-solid coupled method was presented.The fluid-solid coupled mathematics models of aluminum holding furnace in the premixed combustion processing were established based on mass conservation,moment conservation,momentum conservation,energy conservation and chemistry species conservation.Computational results agree well with the test data of the typical condition.The maximum combustion temperature is 1 850 K.The average temperature of the molten aluminum is 1 158 K,and the maximum temperature difference is about 240 K.The average temperature increases 0.3 ℃ while the temperature of combustion air increases 1 ℃.The optimal excess air ratio is 1.25-1.30. 展开更多
关键词 aluminum holding furnace COMBUSTION heat transfer fluid-solid coupled numerical simulation
在线阅读 下载PDF
Function chain neural network prediction on heat transfer performance of oscillating heat pipe based on grey relational analysis 被引量:12
8
作者 鄂加强 李玉强 龚金科 《Journal of Central South University》 SCIE EI CAS 2011年第5期1733-1737,共5页
As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a loo... As for the factors affecting the heat transfer performance of complex and nonlinear oscillating heat pipe (OHP),grey relational analysis (GRA) was used to deal with the relationship between heat transfer rate of a looped copper-water OHP and charging ratio,inner diameter,inclination angel,heat input,number of turns,and the main influencing factors were defined.Then,forecasting model was obtained by using main influencing factors (such as charging ratio,interior diameter,and inclination angel) as the inputs of function chain neural network.The results show that the relative average error between the predicted and actual value is 4%,which illustrates that the function chain neural network can be applied to predict the performance of OHP accurately. 展开更多
关键词 oscillating heat pipe grey relational analysis fimction chain neural network heat transfer
在线阅读 下载PDF
Kerosene-alumina nanofluid flow and heat transfer for cooling application 被引量:9
9
作者 M.Mahmoodi Sh.Kandelousi 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期983-990,共8页
Kerosene-alumina nanofluid flow and heat transfer in the presence of magnetic field are studied. The basic partial differential equations are reduced to ordinary differential equations which are solved semi analytical... Kerosene-alumina nanofluid flow and heat transfer in the presence of magnetic field are studied. The basic partial differential equations are reduced to ordinary differential equations which are solved semi analytically using differential transformation method. Velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number are determined analytically. The influence of pertinent parameters such as magnetic parameter, nanofluid volume fraction, viscosity parameter and Eckert number on the flow and heat transfer characteristics is discussed. Results indicate that skin friction coefficient decreases with increase of magnetic parameter, nanofluid volume fraction and viscosity parameter. Nusselt number increases with increase of magnetic parameter and nanofluid volume fraction while it decreases with increase of Eckert number and viscosity parameter. 展开更多
关键词 magnetic field NANOFLUID heat transfer differential transformation method
在线阅读 下载PDF
Numerical investigation of laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders 被引量:8
10
作者 Mehdi MIRZAEYAN Davood TOGHRAIE 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1976-1999,共24页
In this study, the laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders was investigated. The problem is investigated in two different geometries and the Re=10, 25, 50, 75, 100 a... In this study, the laminar heat transfer and nanofluid flow between two porous horizontal concentric cylinders was investigated. The problem is investigated in two different geometries and the Re=10, 25, 50, 75, 100 and volume fraction 0, 0.2%, 0.5%, 2% and 5% that related to copper nanoparticles, and porous medium porosity of 0.5 and 0.9. Compared to the first geometry, the convective coefficient in the second geometry increases by 8.3%, 7% and 5.5% at Reynolds numbers of 100, 75 and 50, respectively. Comparison of the outlet temperatures for two heat fluxes of 300 and 1200 W/m^2 indicates a 2.5% temperature growth by a fourfold increase in the heat fluxes. Also, the higher Nusselt number is associated with the second geometry occurring at porosities of 0.9 and 0.5, respectively. In both geometries, the Nusselt number values at the porosity of 0.9 are higher, which is due to the increased nanofluid convection at higher porosities. The velocity of the nanofluid experiences a two-fold increase at the outlet compared to its inlet velocity in the first geometry and for both porosities. Similarly, a three-fold increase was achieved in the second geometry and for both porosities. 展开更多
关键词 porous horizontal concentric cylinders nanofluid flow PERMEABILITY heat transfer
在线阅读 下载PDF
Unsteady boundary layer flow and heat transfer over an exponentially shrinking sheet with suction in a copper-water nanofluid 被引量:7
11
作者 Aurang Zaib Krishnendu Bhattacharyya Sharidan Shafie 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4856-4863,共8页
An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented.Water is treated as a base fluid.In the investigation,non-un... An analysis of unsteady boundary layer flow and heat transfer over an exponentially shrinking porous sheet filled with a copper-water nanofluid is presented.Water is treated as a base fluid.In the investigation,non-uniform mass suction through the porous sheet is considered.Using Keller-box method the transformed equations are solved numerically.The results of skin friction coefficient,the local Nusselt number as well as the velocity and temperature profiles are presented for different flow parameters.The results showed that the dual non-similar solutions exist only when certain amount of mass suction is applied through the porous sheet for various unsteady parameters and nanoparticle volume fractions.The ranges of suction where dual non-similar solution exists,become larger when values of unsteady parameter as well as nanoparticle volume fraction increase.So,due to unsteadiness of flow dynamics and the presence of nanoparticles in flow field,the requirement of mass suction for existence of solution of boundary layer flow past an exponentially shrinking sheet is less.Furthermore,the velocity boundary layer thickness decreases and thermal boundary layer thickness increases with increasing of nanoparticle volume fraction in both non-similar solutions.Whereas,for stronger mass suction,the velocity boundary layer thickness becomes thinner for the first solution and the effect is opposite in the case of second solution.The temperature inside the boundary layer increases with nanoparticle volume fraction and decreases with mass suction.So,for the unsteadiness and for the presence of nanoparticles,the flow separation is delayed to some extent. 展开更多
关键词 unsteady boundary layer heat transfer NANOFLUID exponentially shrinking sheet dual non-similar solutions
在线阅读 下载PDF
Melting heat transfer with radiative effects and homogeneous–heterogeneous reaction in thermally stratified stagnation flow embedded in porous medium 被引量:4
12
作者 M.JAVED M.FAROOQ +1 位作者 S.AHMAD Aisha ANJUM 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2701-2711,共11页
The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat tr... The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat transfer.Homogeneous–heterogeneous reaction and radiative effects have been further taken into account to reconnoiterproperties of heat transfer.Melting heat transfer and phenomenon of homogeneous–heterogeneous reaction have engrossed widespread utilization in purification of metals,welding process,electroslag melting,biochemical systems,catalysis and several industrial developments.Suitable transformations are utilized to attain a scheme of ordinary differential equations possessing exceedingly nonlinear nature.Homotopic process is employed to develop convergent solutions of the resulting problem.Discussion regarding velocity,thermal field and concentration distribution for several involved parameters is pivotal part.Graphical behaviors of skin friction coefficient and Nusselt number are also portrayed.Concentration of the reactants is found to depreciate as a result of strength of both heterogeneous and homogeneous reaction parameters.With existence of melting phenomenon,declining attitude of fluid temperature is observed for higher radiation parameter. 展开更多
关键词 melting heat transfer porous medium stagnation point variable sheet thickness homogeneous– heterogeneous reaction
在线阅读 下载PDF
Enhancement of Flow Boiling Heat Transfer with Surfactant 被引量:3
13
作者 QIU Yun-ren CHEN Wei-ping SI Qin 《Journal of Central South University》 SCIE EI CAS 2000年第4期219-222,共4页
The surfactant additive octadecylamine (ODA) was used to enhance the flow boiling heat transfer of water in vertical copper tube, and the effects of the aqueous solution properties, mass fraction of ODA, mass flux and... The surfactant additive octadecylamine (ODA) was used to enhance the flow boiling heat transfer of water in vertical copper tube, and the effects of the aqueous solution properties, mass fraction of ODA, mass flux and heat flux etc. on flow boiling heat transfer were investigated. In order to analyze the mechanism of enhancement on boiling heat transfer with ODA, the copper surface was detected by XPS, and the diagram of binding energy was obtained. The results show that ODA can be adsorbed on the surface of the copper wall, and affects the properties of the heating surfaces and enhances the flow boiling heat transfer of water. Only in low heat flux and in a suitable range of concentration, can ODA aqueous solution enhance flow boiling heat transfer, and the suitable mass fraction of ODA is in the range of 1×10 -5 5×10 -5 . In addition, compared with water, ODA aqueous solution does not increase the flow drag under the same experimental conditions. 展开更多
关键词 flow boiling heat transfer flow drag ENHANCEMENT ADDITIVE
在线阅读 下载PDF
Effects of bending on heat transfer performance of axial micro-grooved heat pipe 被引量:5
14
作者 蒋乐伦 汤勇 潘敏强 《Journal of Central South University》 SCIE EI CAS 2011年第2期580-586,共7页
Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved... Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations. 展开更多
关键词 electronics cooling system axial micro-grooved heat pipe BENDING heat transfer performance
在线阅读 下载PDF
Thermo-structural analysis on evaluating effects of friction and transient heat transfer on performance of gears in high-precision assemblies 被引量:3
15
作者 Hossein Golbakhshi Moslem Namjoo 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期71-80,共10页
The high precision assemblies with considerable radial interference should be accompanied by heating and cooling processes.However,the mechanical properties of metals are greatly affected by thermal operations.So,for ... The high precision assemblies with considerable radial interference should be accompanied by heating and cooling processes.However,the mechanical properties of metals are greatly affected by thermal operations.So,for evaluating the stress distribution and distortion of teeth profiles in a gear/shaft assembly,a transient thermal analysis is necessary for finding the change in mechanical properties.The friction on the contact surface is another important parameter in interaction of the gear with the shaft.Evaluating the gear stress and deformation fields for several modes of heat transfer and friction coefficients showed that the maximum radial or tangential stresses on contact surface of the joint may have more than 8%increase by increasing friction coefficient;while the intensity of heat transfer at cooling stage has lower effect on stress distribution. 展开更多
关键词 friction coefficient transient heat transfer stress field distortion of teeth concurrent analyses
在线阅读 下载PDF
Numerical investigation of flow and heat transfer behind a two-dimensional backward-facing step equipped with a semi-porous baffle 被引量:4
16
作者 Hamid-Reza BAHRAMI 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3354-3367,共14页
The backward-facing step is a critical problem existing in many engineering and industrial applications.In this study,a semi-porous baffle(the root of the baffle is a porous medium and the tip is solid) is placed behi... The backward-facing step is a critical problem existing in many engineering and industrial applications.In this study,a semi-porous baffle(the root of the baffle is a porous medium and the tip is solid) is placed behind the step.The effects of the length of the porous part,and the baffle location on the energy transfer and pressure drop are studied in different Reynolds numbers(Re=100,200,300,400,500).The effect of the Darcy number of the porous medium on the aforementioned parameters is also investigated.Both the local maximum and average relative Nusselt numbers(divided by the Nusselt of the base case with no baffle at the same Reynolds) and relative pressure drop(calculated as the relative Nusselt number) are reported.The results show that by adoption of the proper length of the porous medium,the average relative and maximum local Nusselt numbers could be enhanced by 20% and 90%,respectively.Low permeable porous media give better energy transfer.For example,porous media with Da=10^(-5) give 30% better maximum local Nusselt number and about 7% higher average Nusselt number with respect to the same case with Da=10^(-2). 展开更多
关键词 porous media enhanced heat transfer BAFFLE backward-facing step two-dimensional channel
在线阅读 下载PDF
Dropwise condensation heat transfer enhancement on surfaces micro/nano structured by a two-step electrodeposition process 被引量:4
17
作者 Hamid Reza TALESH BAHRAMI Alireza AZIZI Hamid SAFFARI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1065-1076,共12页
Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two diffe... Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time. 展开更多
关键词 dropwise condensation heat transfer ELECTRODEPOSITION micro/nano structure POROSITY
在线阅读 下载PDF
Dual solutions of MHD stagnation point flow and heat transfer over a stretching/shrinking sheet with generalized slip condition 被引量:3
18
作者 ABBAS Zaheer MASOOD Tahmina OLANREWAJU Philip Oladapo 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2376-2384,共9页
An analysis was made to study the steady momentum and heat transfer characteristics of a viscous electrically conducting fluid near a stagnation point due to a stretching/shrinking sheet in the presence of a transvers... An analysis was made to study the steady momentum and heat transfer characteristics of a viscous electrically conducting fluid near a stagnation point due to a stretching/shrinking sheet in the presence of a transverse magnetic field and generalized slip condition. Two flow problems corresponding to the planar and axisymmetric stretching/shrinking sheet were considered. By means of similarity transformations, the obtained resultant nonlinear ordinary differential equations were solved numerically using a shooting method for dual solutions of velocity and temperature profiles. Some important physical features of the flow and heat transfer in terms of the fluid velocity, the temperature distribution, the skin friction coefficient and the local Nusselt number for various values of the controlling governing parameters like velocity slip parameter, critical shear rate, magnetic field, ratio of stretching/shrinking rate to external flow rate and Prandtl number were analyzed and discussed. An increase of the critical shear rate decreases the fluid velocity whereas the local Nusselt number increases. The comparison of the present numerical results with the existing literature in a limiting case is given and found to be in an excellent agreement. 展开更多
关键词 dual solutions stagnation-point MHD flow slip condition heat transfer numerical solution transverse magnetic fields
在线阅读 下载PDF
CFD investigation of effect of nanofluid filled Trombe wall on 3D convective heat transfer 被引量:3
19
作者 ALBAQAWY Ghazy MESLOUB Abdelhakim KOLSI Lioua 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3569-3579,共11页
A numerical investigation was carried out on the effect of carbon nanotube(CNT)-water-nanofluid-filled Trombe wall on heat transfer and fluid flow inside a 3 D typical room.Time depending governing equations are consi... A numerical investigation was carried out on the effect of carbon nanotube(CNT)-water-nanofluid-filled Trombe wall on heat transfer and fluid flow inside a 3 D typical room.Time depending governing equations are considered with applying hot temperature at the left surface(collector) of the Trombe wall.The left wall(glazing) of the room and a square part(window) at the right wall are considered at cold temperature.The effects of Rayleigh number and the nanofluid volume fractions and the Trombe wall height on the temperature field,flow structure and heat transfer rate,are studied.The results show that the addition of nanoparticles and the increase of the Trombe wall height,enhance the heat transfer considerably and affect the flow structure and the temperature field. 展开更多
关键词 Trombe wall CNT-nanofluid 3D natural convection CFD heat transfer
在线阅读 下载PDF
Peristaltic transport of MHD Williamson fluid in an inclined asymmetric channel through porous medium with heat transfer 被引量:2
20
作者 K.Ramesh M.Devakar 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3189-3201,共13页
The intention of this investigation is to study the effects of heat transfer and inclined magnetic field on the peristaltic flow of Williamson fluid in an asymmetric channel through porous medium. The governing two-di... The intention of this investigation is to study the effects of heat transfer and inclined magnetic field on the peristaltic flow of Williamson fluid in an asymmetric channel through porous medium. The governing two-dimensional equations are simplified under the assumption of long wavelength approximation. The simplified equations are solved for the stream function, temperature, and axial pressure gradient by using a regular perturbation method. The expression for pressure rise is computed numerically. The profiles of velocity, pressure gradient, temperature, heat transfer coefficient and stream function are sketched and interpreted for various embedded parameters and also the behavior of stream function for various wave forms is discussed through graphs. It is observed that the peristaltic velocity increases from porous medium to non-porous medium, the magnetic effects have increasing effect on the temperature, and the size of the trapped bolus decreases with the increasing of magnetic effects while the trend is reversed with the increasing of Darcy number. Moreover, limiting solutions of our problem are in close agreement with the corresponding results of the Newtonian fluid model. 展开更多
关键词 Williamson fluid heat transfer inclined magnetic field porous medium inclined asymmetric channel
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部