为提高双滤波器结构(Dual filter structure,DFS)一级滤波器W1(k)的收敛速度,本文提出一种改进的Haar子带变换(Partial Haar transform,PHT)算法。新算法先对W1(k)的输入信号进行PHT变换以压缩滤波器长度;然后通过优化收敛步长使后验误...为提高双滤波器结构(Dual filter structure,DFS)一级滤波器W1(k)的收敛速度,本文提出一种改进的Haar子带变换(Partial Haar transform,PHT)算法。新算法先对W1(k)的输入信号进行PHT变换以压缩滤波器长度;然后通过优化收敛步长使后验误差最小化以提高收敛速度;最后通过分时保存、维护算法的归一化因子以降低算法计算复杂度。通过提高W1(k)的收敛速度,新算法可以更少的迭代次数获得稳定的延时估计,从而提高DFS的整体收敛速度。以回声消除为应用背景对新算法进行实验仿真,实验结果表明新算法性能显著优于其他传统的自适应算法。展开更多
随着更多照相和视频捕捉设备的涌现,对于非接触式手势命令的识别提出了很高的需求。本文针对这一趋势,依据实验环境和实际应用的需要,提出了一种在基于OpenCV2.2视觉库和Visual Studio C++来实现的Haar的矩形特征提取并充分利用Adaboos...随着更多照相和视频捕捉设备的涌现,对于非接触式手势命令的识别提出了很高的需求。本文针对这一趋势,依据实验环境和实际应用的需要,提出了一种在基于OpenCV2.2视觉库和Visual Studio C++来实现的Haar的矩形特征提取并充分利用Adaboost的学习分类模块来实现对特定握拳手势的实时识别和精确定位。本方法使用的迭代算法将弱分类器训练组合为强分类器,经过基于正负样本图片的过程后,所得的级联分类器首先可以根据摄像头捕捉的视频中的实时手势位置,能够识别手势的类型并进行对应画笔轨迹的跟踪实验,并且通过具体的算法,在已识别的各个位置中,实现了去除可能的误差位置,从而使得画笔的轨迹更为流畅。根据统计,所进行的实验对室内环境下握拳手势的识别率可以达到90%,取得了良好的效果。展开更多
文摘为提高双滤波器结构(Dual filter structure,DFS)一级滤波器W1(k)的收敛速度,本文提出一种改进的Haar子带变换(Partial Haar transform,PHT)算法。新算法先对W1(k)的输入信号进行PHT变换以压缩滤波器长度;然后通过优化收敛步长使后验误差最小化以提高收敛速度;最后通过分时保存、维护算法的归一化因子以降低算法计算复杂度。通过提高W1(k)的收敛速度,新算法可以更少的迭代次数获得稳定的延时估计,从而提高DFS的整体收敛速度。以回声消除为应用背景对新算法进行实验仿真,实验结果表明新算法性能显著优于其他传统的自适应算法。
文摘随着更多照相和视频捕捉设备的涌现,对于非接触式手势命令的识别提出了很高的需求。本文针对这一趋势,依据实验环境和实际应用的需要,提出了一种在基于OpenCV2.2视觉库和Visual Studio C++来实现的Haar的矩形特征提取并充分利用Adaboost的学习分类模块来实现对特定握拳手势的实时识别和精确定位。本方法使用的迭代算法将弱分类器训练组合为强分类器,经过基于正负样本图片的过程后,所得的级联分类器首先可以根据摄像头捕捉的视频中的实时手势位置,能够识别手势的类型并进行对应画笔轨迹的跟踪实验,并且通过具体的算法,在已识别的各个位置中,实现了去除可能的误差位置,从而使得画笔的轨迹更为流畅。根据统计,所进行的实验对室内环境下握拳手势的识别率可以达到90%,取得了良好的效果。