The reliable design problem for linear systems is concerned with. A more practical model of actuator faults than outage is considered. An LMI approach of designing reliable controller is presented for the case of actu...The reliable design problem for linear systems is concerned with. A more practical model of actuator faults than outage is considered. An LMI approach of designing reliable controller is presented for the case of actuator faults that can be modeled by a scaling factor. The resulting control systems are reliable in that they provide guaranteed asymptotic stability and H∞ performance when some control component (actuator) faults occur. A numerical example is also given to illustrate the design procedure and their effectiveness. Furthermore, the optimal standard controller and the optimal reliable controller are compared to show the necessity of reliable control.展开更多
The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback me...The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.展开更多
The problem of robust and H∞ reliable control for a class of uncertain singular systems with state time-delay is concerned. The problem we address is to design a state feedback controller such that the resulting clos...The problem of robust and H∞ reliable control for a class of uncertain singular systems with state time-delay is concerned. The problem we address is to design a state feedback controller such that the resulting close-loop systems is regular, impulse free and stable for all admissible uncertainties as well as actuator faults among a prespecified subset. A linear matrix inequality (LMI) design approach is proposed to solve the problem addressed with Hoo norm bound constraint on disturbance attenuation. Finally, a numerical example is provided to demonstrate the application of the proposed method.展开更多
The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and n...The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and norm-bounded parameter uncertainties. The purpose is to design state feedback controllers which can tolerate actuator failure, such that the closed-loop system is stable, and the specified cost function has an upper bound for all admissible uncertainties. The sufficient conditions for the solvability of this problem are obtained by a linear matrix inequality (LMI) method. Furthermore, a numerical example is given to demonstrate the applicability of the proposed approach.展开更多
To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems, the Takagi-Sugeno (T-S) fuzzy model is used to represent a nonlinear singular stochastic system wi...To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems, the Takagi-Sugeno (T-S) fuzzy model is used to represent a nonlinear singular stochastic system with norm-bounded parameter uncertainties and time delay. Based on the linear matrix inequality (LMI) techniques and stability theory of stochastic differential equations, a stochastic Lyapunov function method is adopted to design a state feedback fuzzy controller. The resulting closed-loop fuzzy system is robustly reliable stochastically stable, and the corresponding quadratic cost function is guaranteed to be no more than a certain upper bound for all admissible uncertainties, as well as different actuator fault cases. A sufficient condition of existence and design method of robust reliable guaranteed cost controller is presented. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.展开更多
The problem of robust and reliable control design for linear uncertain impulsive systems with both timevarying norm-bounded parameter uncertainty and actuator failures was studied. The actuators are classified into tw...The problem of robust and reliable control design for linear uncertain impulsive systems with both timevarying norm-bounded parameter uncertainty and actuator failures was studied. The actuators are classified into two groups. One set of actuators susceptible to failures is possible to fail, the other set of actuators robust to failures is assumed never to fail. The outputs of the actuator failures are regarded as zero. The purpose is to design the state feedback controller such that, for all admissible uncertainties as well as actuator failures occurring among a prespecified subset of actuators, the plant remains asymptotically stable. A modified algebraic Riccati equation approach was developed to solve the problem addressed and a robust reliable control law was obtained. An numerical example was also offered to prove the effectiveness of the proposed method.展开更多
控制力矩陀螺(control moment gyroscope,CMG)框架伺服系统常受到外部扰动力矩和内部参数摄动等多源扰动影响,导致其控制性能降低,本文重点针对参数摄动对框架伺服系统造成的影响,提出了基于H_(2)/H_(∞)复合控制的CMG框架伺服系统扰动...控制力矩陀螺(control moment gyroscope,CMG)框架伺服系统常受到外部扰动力矩和内部参数摄动等多源扰动影响,导致其控制性能降低,本文重点针对参数摄动对框架伺服系统造成的影响,提出了基于H_(2)/H_(∞)复合控制的CMG框架伺服系统扰动抑制方法.在常规H_(∞)鲁棒控制方法中引入电机参数摄动量,在保证对外部力矩扰动具有鲁棒性的基础上,提升对内部参数摄动影响的抑制能力;结合H_(2)控制策略,提出基于状态反馈H_(2)/H_(∞)复合控制方法,在保证稳态性能的同时进一步提升系统动态响应速度.所提出的复合控制方法能够有效降低多源扰动导致的速度波动,提升系统的动态响应速度.展开更多
为不明确的 Lur' e 的一个班追踪控制的可靠柔韧的 H 的问题单个系统被学习。致动器和传感器的一个实际、一般的失败模型被使用凸的 polytopic 无常描述控制表面缺陷考虑。一些足够的条件以线性矩阵不平等(LMI ) 为致动器,传感器...为不明确的 Lur' e 的一个班追踪控制的可靠柔韧的 H 的问题单个系统被学习。致动器和传感器的一个实际、一般的失败模型被使用凸的 polytopic 无常描述控制表面缺陷考虑。一些足够的条件以线性矩阵不平等(LMI ) 为致动器,传感器和控制表面失败的案例被介绍。结果的控制系统是可靠的因为他们与当所有控制部件象一些控制部件什么时候经历失败一样是运作的时,没有不变的错误,追踪引用信号的 H 性能和输出保证靠近环的系统得到柔韧的稳定性。最后,一个数字例子被给显示出建议方法的有效性。展开更多
直流微电网中常常含有恒功率负载(constant power loads,CPLs),其负阻抗特性会降低系统的稳定性,造成直流母线电压波动甚至崩溃。因此,首先建立了直流微电网的小信号模型,使用根轨迹法分析了恒功率负载对系统稳定性的影响;其次提出一种...直流微电网中常常含有恒功率负载(constant power loads,CPLs),其负阻抗特性会降低系统的稳定性,造成直流母线电压波动甚至崩溃。因此,首先建立了直流微电网的小信号模型,使用根轨迹法分析了恒功率负载对系统稳定性的影响;其次提出一种基于混合灵敏度优化的电压控制策略,提升了直流微电网系统的稳定性,并采用改进粒子群优化(particle swarm optimization,PSO)算法对权函数进行了优化,进一步提升了鲁棒控制器的性能;最后采用Matlab/Simulink仿真算例进行验证,仿真结果表明提出的鲁棒控制器减小了母线电压的波动,有效提升了直流微电网系统的稳定性。展开更多
The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabil...The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabilization of the stochastic system without disturbance input is investigated by nonlinear matrix inequality method.Then,a full-order stochastic dynamic output feedback controller is designed by solving a bilinear matrix inequality(BMI),which ensures a prescribed stochastic robust H_∞ performance level for the resulting closed-loop system with nonzero disturbance input and for all admissible uncertainties.An illustrative example is provided to show the feasibility of the controller and the potential of the proposed technique.展开更多
Decentralized H_∞ control was studied for a class of interconnected uncertain systems with multiple delays in the state and control and time varying but norm-bounded parametric uncertainties. A sufficient condition w...Decentralized H_∞ control was studied for a class of interconnected uncertain systems with multiple delays in the state and control and time varying but norm-bounded parametric uncertainties. A sufficient condition which makes the closed-loop system decentralized asymptotically stable with H_∞ performance was derived based on Lyapunov stability theorem. This condition is expressed as the solvability problem of linear matrix inequalities. The method overcomes the limitations of the existing algebraic Riccati equation method. Finally, a numerical example was given to demonstrate the design procedure for the decentralized H_∞ state feedback controller.展开更多
基金This project was supported by the Education Foundation of liaoning province (ECL-202263357)
文摘The reliable design problem for linear systems is concerned with. A more practical model of actuator faults than outage is considered. An LMI approach of designing reliable controller is presented for the case of actuator faults that can be modeled by a scaling factor. The resulting control systems are reliable in that they provide guaranteed asymptotic stability and H∞ performance when some control component (actuator) faults occur. A numerical example is also given to illustrate the design procedure and their effectiveness. Furthermore, the optimal standard controller and the optimal reliable controller are compared to show the necessity of reliable control.
基金the National Natural Science Foundation of China (60574001)Program for New Century Excellent Talents in University (05-0485)Program for Innovative Research Team of Jiangnan University
文摘The robust reliable H∞ control problem for discrete-time Markovian jump systems with actuator failures is studied. A more practical model of actuator failures than outage is considered. Based on the state feedback method, the resulting closed-loop systems are reliable in that they remain robust stochastically stable and satisfy a certain level of H∞ disturbance attenuation not only when all actuators are operational, but also in case of some actuator failures, The solvability condition of controllers can be equivalent to a feasibility problem of coupled linear matrix inequalities (LMIs). A numerical example is also given to illustrate the design procedures and their effectiveness.
文摘The problem of robust and H∞ reliable control for a class of uncertain singular systems with state time-delay is concerned. The problem we address is to design a state feedback controller such that the resulting close-loop systems is regular, impulse free and stable for all admissible uncertainties as well as actuator faults among a prespecified subset. A linear matrix inequality (LMI) design approach is proposed to solve the problem addressed with Hoo norm bound constraint on disturbance attenuation. Finally, a numerical example is provided to demonstrate the application of the proposed method.
基金supported by the National Natural Science Foundation of China (60564001)the Program for New Century Excellent Talentsin University (NCET-06-0756)
文摘The robust reliable guaranteed cost control for uncertain singular delay systems with actuator failures and a given quadratic cost function is studied. The system under consideration involves constant time-delay and norm-bounded parameter uncertainties. The purpose is to design state feedback controllers which can tolerate actuator failure, such that the closed-loop system is stable, and the specified cost function has an upper bound for all admissible uncertainties. The sufficient conditions for the solvability of this problem are obtained by a linear matrix inequality (LMI) method. Furthermore, a numerical example is given to demonstrate the applicability of the proposed approach.
基金the National Natural Science Foundation of China (60574088,60274014).
文摘To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems, the Takagi-Sugeno (T-S) fuzzy model is used to represent a nonlinear singular stochastic system with norm-bounded parameter uncertainties and time delay. Based on the linear matrix inequality (LMI) techniques and stability theory of stochastic differential equations, a stochastic Lyapunov function method is adopted to design a state feedback fuzzy controller. The resulting closed-loop fuzzy system is robustly reliable stochastically stable, and the corresponding quadratic cost function is guaranteed to be no more than a certain upper bound for all admissible uncertainties, as well as different actuator fault cases. A sufficient condition of existence and design method of robust reliable guaranteed cost controller is presented. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.
基金Project (60474003) supported by the National Natural Science Foundation of China
文摘The problem of robust and reliable control design for linear uncertain impulsive systems with both timevarying norm-bounded parameter uncertainty and actuator failures was studied. The actuators are classified into two groups. One set of actuators susceptible to failures is possible to fail, the other set of actuators robust to failures is assumed never to fail. The outputs of the actuator failures are regarded as zero. The purpose is to design the state feedback controller such that, for all admissible uncertainties as well as actuator failures occurring among a prespecified subset of actuators, the plant remains asymptotically stable. A modified algebraic Riccati equation approach was developed to solve the problem addressed and a robust reliable control law was obtained. An numerical example was also offered to prove the effectiveness of the proposed method.
文摘控制力矩陀螺(control moment gyroscope,CMG)框架伺服系统常受到外部扰动力矩和内部参数摄动等多源扰动影响,导致其控制性能降低,本文重点针对参数摄动对框架伺服系统造成的影响,提出了基于H_(2)/H_(∞)复合控制的CMG框架伺服系统扰动抑制方法.在常规H_(∞)鲁棒控制方法中引入电机参数摄动量,在保证对外部力矩扰动具有鲁棒性的基础上,提升对内部参数摄动影响的抑制能力;结合H_(2)控制策略,提出基于状态反馈H_(2)/H_(∞)复合控制方法,在保证稳态性能的同时进一步提升系统动态响应速度.所提出的复合控制方法能够有效降低多源扰动导致的速度波动,提升系统的动态响应速度.
基金Supported by National Natural Science Foundation of China (61034005, 60974071), Program for New Century Excellent Talents in University (NCET-08-0101), and Fundamental Research Funds for the Central Universities (N100104102, Nl10604007)
文摘为不明确的 Lur' e 的一个班追踪控制的可靠柔韧的 H 的问题单个系统被学习。致动器和传感器的一个实际、一般的失败模型被使用凸的 polytopic 无常描述控制表面缺陷考虑。一些足够的条件以线性矩阵不平等(LMI ) 为致动器,传感器和控制表面失败的案例被介绍。结果的控制系统是可靠的因为他们与当所有控制部件象一些控制部件什么时候经历失败一样是运作的时,没有不变的错误,追踪引用信号的 H 性能和输出保证靠近环的系统得到柔韧的稳定性。最后,一个数字例子被给显示出建议方法的有效性。
基金Supported by National Basic Research Program of China (973 Program) (2009CB320601), National Natural Science Foundation of China (60774048, 60821063), the Program for Cheung Kong Scholars, and the Research Fund for the Doctoral Program of China Higher Education (20070145015)
文摘这份报纸学习样品数据的问题为有变化时间的延期的不明确的连续时间的模糊大规模系统的可靠 H 夸张控制。第一,模糊夸张模型( FHM )被用来为某些复杂大规模系统建立模型,然后根据 Lyapunov 指导方法和大规模系统的分散的控制理论,线性 matrixine 质量( LMI )基于条件 arederived toguarantee H 性能不仅当所有控制部件正在操作很好时,而且面对一些可能的致动器失败。而且,致动器的精确失败参数没被要求,并且要求仅仅是失败参数的更低、上面的界限。条件依赖于时间延期的上面的界限,并且不依赖于变化时间的延期的衍生物。因此,获得的结果是不太保守的。最后,二个例子被提供说明设计过程和它的有效性。
文摘直流微电网中常常含有恒功率负载(constant power loads,CPLs),其负阻抗特性会降低系统的稳定性,造成直流母线电压波动甚至崩溃。因此,首先建立了直流微电网的小信号模型,使用根轨迹法分析了恒功率负载对系统稳定性的影响;其次提出一种基于混合灵敏度优化的电压控制策略,提升了直流微电网系统的稳定性,并采用改进粒子群优化(particle swarm optimization,PSO)算法对权函数进行了优化,进一步提升了鲁棒控制器的性能;最后采用Matlab/Simulink仿真算例进行验证,仿真结果表明提出的鲁棒控制器减小了母线电压的波动,有效提升了直流微电网系统的稳定性。
基金supported by the National Natural Science Foundation of China(607404306646087403160904060)
文摘The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabilization of the stochastic system without disturbance input is investigated by nonlinear matrix inequality method.Then,a full-order stochastic dynamic output feedback controller is designed by solving a bilinear matrix inequality(BMI),which ensures a prescribed stochastic robust H_∞ performance level for the resulting closed-loop system with nonzero disturbance input and for all admissible uncertainties.An illustrative example is provided to show the feasibility of the controller and the potential of the proposed technique.
文摘Decentralized H_∞ control was studied for a class of interconnected uncertain systems with multiple delays in the state and control and time varying but norm-bounded parametric uncertainties. A sufficient condition which makes the closed-loop system decentralized asymptotically stable with H_∞ performance was derived based on Lyapunov stability theorem. This condition is expressed as the solvability problem of linear matrix inequalities. The method overcomes the limitations of the existing algebraic Riccati equation method. Finally, a numerical example was given to demonstrate the design procedure for the decentralized H_∞ state feedback controller.