期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于KPCA和SVM的火箭发动机试验台故障诊断方法 被引量:9
1
作者 朱宁 冯志刚 王祁 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第3期81-84,120,共5页
为了解决液体火箭发动机试验台的故障诊断问题,提出了一种基于核主元分析(KPCA)特征提取和支持向量多分类机(SVM)的故障诊断方法,该方法首先利用核主元分析对试验台标准故障样本进行特征提取,通过特征分析,建立适合于试验台故障状态识... 为了解决液体火箭发动机试验台的故障诊断问题,提出了一种基于核主元分析(KPCA)特征提取和支持向量多分类机(SVM)的故障诊断方法,该方法首先利用核主元分析对试验台标准故障样本进行特征提取,通过特征分析,建立适合于试验台故障状态识别的层次多分类支持向量机,并对其进行训练,然后将试验数据在主元上投影,输入到训练好的支持向量多分类器,对试验台故障状态进行识别.该方法充分利用了核主元分析强大的非线性特征提取能力和支持向量分类机良好的小样本泛化特性,解决了试验台故障诊断中的小样本、非线性模式识别问题.对试验台的试验结果表明,该方法是有效的、可行的. 展开更多
关键词 液体火箭发动机试验台 故障诊断 特征提取 核主元分析 层次支持向量多分类机
在线阅读 下载PDF
一种基于有监督局部决策分层支持向量机的异常检测方法 被引量:11
2
作者 徐琴珍 杨绿溪 《电子与信息学报》 EI CSCD 北大核心 2010年第10期2383-2387,共5页
该文针对包含多种攻击模式的高维特征空间中的异常检测问题,提出了一种基于有监督局部决策的分层支持向量机(HSVM)异常检测方法。通过HSVM的二叉树结构实现复杂异常检测问题的分而治之,即在每个中间节点上,通过信息增益准则构建有监督... 该文针对包含多种攻击模式的高维特征空间中的异常检测问题,提出了一种基于有监督局部决策的分层支持向量机(HSVM)异常检测方法。通过HSVM的二叉树结构实现复杂异常检测问题的分而治之,即在每个中间节点上,通过信息增益准则构建有监督学习所需的训练信号,监督局部决策;在每个嵌入中间节点的二分类支持向量机(SVM)的训练过程中,以局部决策边界对特征的敏感度为依据,选择入侵检测的局部最优特征子集。实验结果表明,该文提出的异常检测方法能够在训练信号的局部决策监督下构建具有良好稳定性的检测学习模型,并能以更精简的特征信息实现检测精确率和检测效率的提高。 展开更多
关键词 异常入侵检测 分层支持向量机 特征信用度 有监督局部决策
在线阅读 下载PDF
一种基于多分类语义分析和个性化的语义检索方法 被引量:1
3
作者 马应龙 李鹏鹏 张敬旭 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期261-265,共5页
为了进一步提升语义检索的精度和改善用户体验,提出了一种基于多分类语义分析和个性化的语义检索方法.首先,利用改进的多分类语义分析方法实现目标文档的向量化,并建立词向量库;然后,利用支持向量机对文档进行分类,并结合文档类别生成... 为了进一步提升语义检索的精度和改善用户体验,提出了一种基于多分类语义分析和个性化的语义检索方法.首先,利用改进的多分类语义分析方法实现目标文档的向量化,并建立词向量库;然后,利用支持向量机对文档进行分类,并结合文档类别生成标签索引.在检索时,根据词向量库的引导,使用用户历史检索记录和个人信息优化检索结果.实验结果显示,基于该方法的系统的检索精度、平均DCG和nDCG指标值分别达到0.7,7.267和0.890,较基于Lucene方法和Yahoo Directory方法所得结果的均值分别高出31%,36%和19%.在时间复杂度上,每次检索的平均耗时为0.669 s,较Lucene方法仅增加了0.326 s.由此可见,该方法提高了检索的精度和综合相关度,且额外的时间消耗较少. 展开更多
关键词 语义检索 多分类语义分析 词向量库 个性化算法 multi-classification SEMANTIC analysis (MSA) TERM vector database (TVDB )
在线阅读 下载PDF
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:18
4
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(FSVM) adaptive mutation multi-classification.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部