NaTaONcatalysts were synthesized by a hydrothermal(H) and a solid-state(S) methods in this study.The H-and S-NaTaONsamples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), trans...NaTaONcatalysts were synthesized by a hydrothermal(H) and a solid-state(S) methods in this study.The H-and S-NaTaONsamples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), UV–visible(UV–vis) diffuse reflectance spectroscopy, and photoluminescence(PL) spectroscopy. The XRD patterns of the H-and S-samples showed peaks indexed to the pure phase of perovskite NaTaOand minor peaks assignable to TaNat various synthesis temperatures. Substitution of oxygen by nitrogen ions causes the light absorption of the H-and S-NaTaONsamples to be extended to the 600–650 nm region, thus making the samples visible-light active. The NaTaONsamples exhibited photocatalytic activity for Hand Oevolution from aqueous methanol and silver nitrate solutions under visible-light irradiation. The UV–vis and PL spectra of the Hand S-catalysts revealed the presence of cationic vacancies and reduced metallic species, which acted as recombination centers. These results demonstrated that the preparation method plays a critical role in the formation of defect states, thereby governing the photocatalytic activity of the NaTaONcatalysts.展开更多
A globally accurate potential energy surface is reported for the electronic ground-state H2O+. The ab initio energies utilized to map the potential energy surface are calculated at the multireference configuration in...A globally accurate potential energy surface is reported for the electronic ground-state H2O+. The ab initio energies utilized to map the potential energy surface are calculated at the multireference configuration interaction method employing the aug-cc-pVQZ basis set and the full valence complete active space wave function as reference. In order to improve accu- racy of the resulting raw ab initio energies, they are then extrapolated to the complete basis set limit and most importantly to the full configuration-interaction limit by semiempirically correcting the dynamical correlation using the double many- body expansion-scaled external correlation method. The topographical features of the current potential energy surface were examined in detail, which agree nicely with those of other theoretical work.展开更多
Quasi-classical trajectory theory is used to study the reaction of O(3p) with H2 (D2) based on the ground 3A″ potential energy surface (PES). The reaction cross section of the reaction O+H2→+OH+H is in exce...Quasi-classical trajectory theory is used to study the reaction of O(3p) with H2 (D2) based on the ground 3A″ potential energy surface (PES). The reaction cross section of the reaction O+H2→+OH+H is in excellent agreement with the previous result. Vector correlations, product rotational alignment parameters (P2(j′. k)) and several polarizeddependent differential cross sections are further calculated for the reaction. The product polarization distribution exhibits different characteristics that can be ascribed to different motion paths on the PES, arising from various collision energies or mass factors.展开更多
This paper uses the momentum-space optical potential method to calculate the e-H2O scattering elastic cross sections at the energy range from 6 eV to 50 eV, and the differential cross sections in the angle from 0 ...This paper uses the momentum-space optical potential method to calculate the e-H2O scattering elastic cross sections at the energy range from 6 eV to 50 eV, and the differential cross sections in the angle from 0 °to 180° at 40 eV and 50 eV. The polarisation is taken into account via an ab initio equivalent-local potential. The cross sections are compared with experimental measurements and other theoretical calculations.展开更多
基金the financial support from the Ministry of Science and Technology,Taiwan(MOST 104-2218-E-033-006-MY2)
文摘NaTaONcatalysts were synthesized by a hydrothermal(H) and a solid-state(S) methods in this study.The H-and S-NaTaONsamples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), UV–visible(UV–vis) diffuse reflectance spectroscopy, and photoluminescence(PL) spectroscopy. The XRD patterns of the H-and S-samples showed peaks indexed to the pure phase of perovskite NaTaOand minor peaks assignable to TaNat various synthesis temperatures. Substitution of oxygen by nitrogen ions causes the light absorption of the H-and S-NaTaONsamples to be extended to the 600–650 nm region, thus making the samples visible-light active. The NaTaONsamples exhibited photocatalytic activity for Hand Oevolution from aqueous methanol and silver nitrate solutions under visible-light irradiation. The UV–vis and PL spectra of the Hand S-catalysts revealed the presence of cationic vacancies and reduced metallic species, which acted as recombination centers. These results demonstrated that the preparation method plays a critical role in the formation of defect states, thereby governing the photocatalytic activity of the NaTaONcatalysts.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304185 and 11074151)China Postdoctoral Science Foundation(Grant No.2014M561957)+1 种基金the Postdoctoral Innovation Project of Shandong Province,China(Grant No.201402013)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2014AM022)
文摘A globally accurate potential energy surface is reported for the electronic ground-state H2O+. The ab initio energies utilized to map the potential energy surface are calculated at the multireference configuration interaction method employing the aug-cc-pVQZ basis set and the full valence complete active space wave function as reference. In order to improve accu- racy of the resulting raw ab initio energies, they are then extrapolated to the complete basis set limit and most importantly to the full configuration-interaction limit by semiempirically correcting the dynamical correlation using the double many- body expansion-scaled external correlation method. The topographical features of the current potential energy surface were examined in detail, which agree nicely with those of other theoretical work.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.60977063 and 10574039)the Innovation Scientists and Technicians Troop Construction Projects of Henan Province of China (Grant No.084100510011)
文摘Quasi-classical trajectory theory is used to study the reaction of O(3p) with H2 (D2) based on the ground 3A″ potential energy surface (PES). The reaction cross section of the reaction O+H2→+OH+H is in excellent agreement with the previous result. Vector correlations, product rotational alignment parameters (P2(j′. k)) and several polarizeddependent differential cross sections are further calculated for the reaction. The product polarization distribution exhibits different characteristics that can be ascribed to different motion paths on the PES, arising from various collision energies or mass factors.
文摘This paper uses the momentum-space optical potential method to calculate the e-H2O scattering elastic cross sections at the energy range from 6 eV to 50 eV, and the differential cross sections in the angle from 0 °to 180° at 40 eV and 50 eV. The polarisation is taken into account via an ab initio equivalent-local potential. The cross sections are compared with experimental measurements and other theoretical calculations.