H-infinity estimator is generally implemented in timevariant state-space models, but it leads to high complexity when the model is used for multiple input multiple output with orthogo- hal frequency division multiplex...H-infinity estimator is generally implemented in timevariant state-space models, but it leads to high complexity when the model is used for multiple input multiple output with orthogo- hal frequency division multiplexing (MIMO-OFDM) systems. Thus, an H-infinity estimator over time-invariant system models is pro- posed, which modifies the Krein space accordingly. In order to avoid the large matrix inversion and multiplication required in each OFDM symbol from different transmit antennas, expectation maximization (EM) is developed to reduce the high computational load. Joint estimation over multiple OFDM symbols is used to resist the high pilot overhead generated by the increasing number of transmit antennas. Finally, the performance of the proposed estimator is enhanced via an angle-domain process. Through performance analysis and simulation experiments, it is indicated that the pro- posed algorithm has a better mean square error (MSE) and bit error rate (BER) performance than the optimal least square (LS) estimator. Joint estimation over multiple OFDM symbols can not only reduce the pilot overhead but also promote the channel performance. What is more, an obvious improvement can be obtained by using the angle-domain filter.展开更多
针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条...针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。展开更多
A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once ...A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once the vehicle encounters the faults that could not be controlled,the constraint conditions are violated.Estimation equations of the velocity errors of the vehicle were given out to estimate the velocity errors of side and forward.So the stability of the whole vehicle could be judged by the velocity errors of the vehicle.Conclusions were validated through the vehicle experiment.This method is based on GPS/INS integrated navigation system,and can provide foundation for fault detections in unmanned autonomous vehicles.展开更多
基金supported by the National Natural Science Foundation of China(6087410860904035+2 种基金61004052)the Directive Plan of Science Research from the Bureau of Education of Hebei Province(Z2009105)the Funds of Central Colleges Basic Scientific Operating Expense(N100604004)
文摘H-infinity estimator is generally implemented in timevariant state-space models, but it leads to high complexity when the model is used for multiple input multiple output with orthogo- hal frequency division multiplexing (MIMO-OFDM) systems. Thus, an H-infinity estimator over time-invariant system models is pro- posed, which modifies the Krein space accordingly. In order to avoid the large matrix inversion and multiplication required in each OFDM symbol from different transmit antennas, expectation maximization (EM) is developed to reduce the high computational load. Joint estimation over multiple OFDM symbols is used to resist the high pilot overhead generated by the increasing number of transmit antennas. Finally, the performance of the proposed estimator is enhanced via an angle-domain process. Through performance analysis and simulation experiments, it is indicated that the pro- posed algorithm has a better mean square error (MSE) and bit error rate (BER) performance than the optimal least square (LS) estimator. Joint estimation over multiple OFDM symbols can not only reduce the pilot overhead but also promote the channel performance. What is more, an obvious improvement can be obtained by using the angle-domain filter.
文摘针对稀疏线阵波达方向估计精度较低问题,提出一种稀疏线阵双迭代傅里叶优化方法。基于阵列孔径原理,利用阵列因子与阵元激励间的傅里叶变换关系,构建稀疏线阵构型优化目标函数;提出双迭代傅里叶变换算法,制定合理的旁瓣阈值和旁瓣约束条件,依据稀疏率和阵元数将孔径自适应分区,以阵列峰值旁瓣和孔径为约束,由双层嵌套循环迭代优化阵列麦克风数量和位置,获得更低的阵列峰值旁瓣电平。数值仿真和实验结果表明,根据该方法获得的49.5λ孔径、23%稀疏率的稀疏阵列峰值旁瓣电平为-21.59 dB,主瓣宽度为1.03°,角度分辨率为1°,估计误差小于0.01。与其他方法对比,峰值旁瓣低1 d B,优化效率提升50%,由此可证明该方法的有效性和快速性。
基金Projects(90820302,60805027) supported by the National Natural Science Foundation of ChinaProject(200805330005) supported by Research Fund for Doctoral Program of Higher Education of China+1 种基金Projects(2009FJ4030) supported by Academician Foundation of Hunan Province,ChinaProject supported by the Freedom Explore Program of Central South University,China
文摘A method used to detect anomaly and estimate the state of vehicle in driving was proposed.The kinematics model of the vehicle was constructed and nonholonomic constraint conditions were added,which refer to that once the vehicle encounters the faults that could not be controlled,the constraint conditions are violated.Estimation equations of the velocity errors of the vehicle were given out to estimate the velocity errors of side and forward.So the stability of the whole vehicle could be judged by the velocity errors of the vehicle.Conclusions were validated through the vehicle experiment.This method is based on GPS/INS integrated navigation system,and can provide foundation for fault detections in unmanned autonomous vehicles.