Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabricati...Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.展开更多
Gate-all-around field-effect transistors(GAA-FETs)represent the leading-edge channel architecture for constructing state-of-the-art highperformance FETs.Despite the advantages offered by the GAA configuration,its appl...Gate-all-around field-effect transistors(GAA-FETs)represent the leading-edge channel architecture for constructing state-of-the-art highperformance FETs.Despite the advantages offered by the GAA configuration,its application to catalytic silicon nanowire(SiNW)channels,known for facile low-temperature fabrication and high yield,has faced challenges primarily due to issues with precise positioning and alignment.In exploring this promising avenue,we employed an in-plane solid–liquidsolid(IPSLS)growth technique to batch-fabricate orderly arrays of ultrathin SiNWs,with diameters of DNW=22.4±2.4 nm and interwire spacing of 90 nm.An in situ channel-releasing technique has been developed to well preserve the geometry integrity of suspended SiNW arrays.By optimizing the source/drain contacts,high-performance GAA-FET devices have been successfully fabricated,based on these catalytic SiNW channels for the first time,yielding a high on/off current ratio of 107 and a steep subthreshold swing of 66 mV dec−1,closing the performance gap between the catalytic SiNW-FETs and state-ofthe-art GAA-FETs fabricated by using advanced top-down EBL and EUV lithography.These results indicate that catalytic IPSLS SiNWs can also serve as the ideal 1D channels for scalable fabrication of high-performance GAA-FETs,well suited for monolithic 3D integrations.展开更多
Rapid development of artificial intelligence requires the implementation of hardware systems with bioinspired parallel information processing and presentation and energy efficiency.Electrolyte-gated organic transistor...Rapid development of artificial intelligence requires the implementation of hardware systems with bioinspired parallel information processing and presentation and energy efficiency.Electrolyte-gated organic transistors(EGOTs)offer significant advantages as neuromorphic devices due to their ultra-low operation voltages,minimal hardwired connectivity,and similar operation environment as electrophysiology.Meanwhile,ionic–electronic coupling and the relatively low elastic moduli of organic channel materials make EGOTs suitable for interfacing with biology.This review presents an overview of the device architectures based on organic electrochemical transistors and organic field-effect transistors.Furthermore,we review the requirements of low energy consumption and tunable synaptic plasticity of EGOTs in emulating biological synapses and how they are affected by the organic materials,electrolyte,architecture,and operation mechanism.In addition,we summarize the basic operation principle of biological sensory systems and the recent progress of EGOTs as a building block in artificial systems.Finally,the current challenges and future development of the organic neuromorphic devices are discussed.展开更多
The exploration and research of low-cost,environmentally friendly,and sustainable organic semiconductor materials are of immense significance in various fields,including electronics,optoelectronics,and energy conversi...The exploration and research of low-cost,environmentally friendly,and sustainable organic semiconductor materials are of immense significance in various fields,including electronics,optoelectronics,and energy conversion.Unfortunately,these semiconductors have almost poor charge transport properties,which range from∼10^(−4) cm^(2)·V^(−1)·s^(−1) to∼10^(−2) cm^(2)·V^(−1)·s^(−1).Vat orange 3,as one of these organic semiconductors,has great potential due to its highly conjugated structure.We obtain high-quality multilayered Vat orange 3 crystals with two-dimensional(2D)growth on h-BN surfaces with thickness of 10–100 nm using physical vapor transport.Raman’s results confirm the stability of the chemical structure of Vat orange 3 during growth.Furthermore,by leveraging the structural advantages of 2D materials,an organic field-effect transistor with a 2D vdW vertical heterostructure is further realized with h-BN encapsulation and multilayered graphene contact electrodes,resulting in an excellent transistor performance with On/Off ratio of 104 and high field-effect mobility of 0.14 cm^(2)·V^(−1)·s^(−1).Our results show the great potential of Vat orange 3 with 2D structures in future nano-electronic applications.Furthermore,we showcase an approach that integrates organic semiconductors with 2D materials,aiming to offer new insights into the study of organic semiconductors.展开更多
Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through...Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through two terminals can be largely controlled by the temperature of the third one.Dynamic response plays an important role in the application of electric devices and also thermal devices,which represents the devices’ability to treat fast varying inputs.In this paper,we systematically study two typical dynamic responses of a thermal transistor,i.e.,the response to a step-function input(a switching process)and the response to a square-wave input.The role of the length L of the control segment is carefully studied.It is revealed that when L is increased,the performance of the thermal transistor worsens badly.Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on L quite well,which agrees with our analytical expectation.However,the detailed power exponents deviate from the expected values noticeably.This implies the violation of the conventional assumptions that we adopt.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sp...Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors.展开更多
Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. Th...Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. This letter reports a dropout neuronal unit(1R1T-DNU) based on one memristor–one electrolyte-gated transistor with an ultralow energy consumption of 25 p J/spike. A dropout neural network is constructed based on such a device and has been verified by MNIST dataset, demonstrating high recognition accuracies(> 90%) within a large range of dropout probabilities up to40%. The running time can be reduced by increasing dropout probability without a significant loss in accuracy. Our results indicate the great potential of introducing such 1R1T-DNUs in full-hardware neural networks to enhance energy efficiency and to solve the overfitting problem.展开更多
The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas w...The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.展开更多
The rapid development of organic electrochemical transistors(OECTs)has ushered in a new era in organic electronics,distinguishing itself through its application in a variety of domains,from high-speed logic circuits t...The rapid development of organic electrochemical transistors(OECTs)has ushered in a new era in organic electronics,distinguishing itself through its application in a variety of domains,from high-speed logic circuits to sensitive biosensors,and neuromorphic devices like artificial synapses and organic electrochemical random-access memories.Despite recent strides in enhancing OECT performance,driven by the demand for superior transient response capabilities,a comprehensive understanding of the complex interplay between charge and ion transport,alongside electron–ion interactions,as well as the optimization strategies,remains elusive.This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses,emphasizing advancements in device physics and optimization approaches.We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications,as well as the impact of materials,morphology,device structure strategies on optimizing transient responses.This paper not only offers a detailed overview of the current state of the art,but also identifies promising avenues for future research,aiming to drive future performance advancements in diversified applications.展开更多
The integration between infrared detection and modern microelectronics offers unique opportunities for compact and high-resolution infrared imaging.However,silicon,the cornerstone of modern microelectronics,can only d...The integration between infrared detection and modern microelectronics offers unique opportunities for compact and high-resolution infrared imaging.However,silicon,the cornerstone of modern microelectronics,can only detect light within a limited wavelength range(<1100 nm)due to its bandgap of 1.12 eV,which restricts its utility in the infrared detection realm.Herein,a photo-driven fin field-effect transistor is presented,which breaks the spectral response constraint of conventional silicon detectors while achieving sensitive infrared detection.This device comprises a fin-shaped silicon channel for charge transport and a lead sulfide film for infrared light harvesting.The lead sulfide film wraps the silicon channel to form a“three-dimensional”infrared-sensitive gate,enabling the photovoltage generated at the lead sulfide-silicon junction to effectively modulate the channel conductance.At room temperature,this device realizes a broadband photodetection from visible(635 nm)to short-wave infrared regions(2700 nm),surpassing the working range of the regular indium gallium arsenide and germanium detectors.Furthermore,it exhibits low equivalent noise powers of 3.2×10^(-12) W·Hz^(-1/2) and 2.3×10^(-11) W·Hz^(-1/2) under 1550 nm and 2700 nm illumination,respectively.These results highlight the significant potential of photo-driven fin field-effect transistors in advancing uncooled silicon-based infrared detection.展开更多
氧化物TFT(Thin Film Transistor)源漏极短路(Gate Data Short,DGS)缺陷导致显示品质恶化和产品报废,明确DGS原理、识别影响因素并输出解决方案对确保产品良率和品质具有积极意义。本文首先确认了DGS宏观现象和微观形貌,随后探究了栅极...氧化物TFT(Thin Film Transistor)源漏极短路(Gate Data Short,DGS)缺陷导致显示品质恶化和产品报废,明确DGS原理、识别影响因素并输出解决方案对确保产品良率和品质具有积极意义。本文首先确认了DGS宏观现象和微观形貌,随后探究了栅极绝缘层(Gate Insulator,GI)介电损耗和耐压强度的关系,统计了不同产品在点灯恶化实验中的DGS发生率,明确了产品栅极电压、刷新率对DGS的影响。将实验现象和调研的DGS机理匹配,分析了氧化物TFT DGS高于非晶硅TFT的原因。结果表明,DGS的本质是栅极绝缘层耐压强度不足而导致的GI介电击穿,GI介电损耗、栅压和刷新率均是影响DGS的显著因子。这些因子在Cu扩散、Cu电迁移机理的相互作用下,降低了GI有效厚度,增加了GI热击穿风险,最终造成了DGS。产线可行的DGS抑制措施有两种:降低叠层GI的SiO_(x)厚度比例,减少叠层栅极绝缘层介电损耗,抑制热击穿;下调TFT栅压,抑制Cu离子扩散和电迁移。将上述措施作为改善方案进行实验测试,面板DGS发生率下降73%。该方案成功抑制了氧化物面板DGS发生率,提升了产品品质,为氧化物TFT制程优化提供了参考。展开更多
金属氧化物薄膜晶体管(Metal oxide thin film transistors,MOTFTs)因其具有较高的载流子迁移率和较好的电学稳定性,在大尺寸发光显示驱动背板应用方面极具潜力。此外,MOTFTs与非晶硅薄膜晶体管的制备工艺兼容,制造成本较低,具有较大市...金属氧化物薄膜晶体管(Metal oxide thin film transistors,MOTFTs)因其具有较高的载流子迁移率和较好的电学稳定性,在大尺寸发光显示驱动背板应用方面极具潜力。此外,MOTFTs与非晶硅薄膜晶体管的制备工艺兼容,制造成本较低,具有较大市场竞争优势。然而,衡量MOTFTs性能的两个关键指标——迁移率和稳定性之间的矛盾限制了其高端显示应用。因此,开发高迁移率兼具高稳定性的MOTFTs成为研究热点和产业竞争焦点。大量研究表明,稀土掺杂氧化物有源半导体材料体系有望实现这一目标。本文重点综述兼具高迁移率和高稳定性的稀土掺杂氧化物材料设计及MOTFTs已达到的性能,探讨稀土掺杂金属氧化物薄膜晶体管(RE-MOTFTs)面临的挑战和发展潜力。展开更多
基金supported by the National Key R&D Plan of China(Grant No.2023YFB3210400)the National Natural Science Foundation of China(No.62174101)+2 种基金the Major Scientific and Technological Innovation Project of Shandong Province(2021CXGC010603)the Fundamental Research Funds of Shandong University(2020QNQT001)Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong,Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong,the Natural Science Foundation of Qingdao-Original exploration project(No.24-4-4-zrjj-139-jch).
文摘Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.
基金financial support received from the National Key Research Program of China under granted No.92164201the National Natural Science Foundation of China for Distinguished Young Scholars No.62325403the Fundamental Research Funds for the Central Universities,and the National Natural Science Foundation of China under No.61934004.
文摘Gate-all-around field-effect transistors(GAA-FETs)represent the leading-edge channel architecture for constructing state-of-the-art highperformance FETs.Despite the advantages offered by the GAA configuration,its application to catalytic silicon nanowire(SiNW)channels,known for facile low-temperature fabrication and high yield,has faced challenges primarily due to issues with precise positioning and alignment.In exploring this promising avenue,we employed an in-plane solid–liquidsolid(IPSLS)growth technique to batch-fabricate orderly arrays of ultrathin SiNWs,with diameters of DNW=22.4±2.4 nm and interwire spacing of 90 nm.An in situ channel-releasing technique has been developed to well preserve the geometry integrity of suspended SiNW arrays.By optimizing the source/drain contacts,high-performance GAA-FET devices have been successfully fabricated,based on these catalytic SiNW channels for the first time,yielding a high on/off current ratio of 107 and a steep subthreshold swing of 66 mV dec−1,closing the performance gap between the catalytic SiNW-FETs and state-ofthe-art GAA-FETs fabricated by using advanced top-down EBL and EUV lithography.These results indicate that catalytic IPSLS SiNWs can also serve as the ideal 1D channels for scalable fabrication of high-performance GAA-FETs,well suited for monolithic 3D integrations.
基金financial support by the self-supporting project of Pazhou Lab(No.PZL2023ZZ0011)by National Key R&D Program of China(No.2019YFA0904801).
文摘Rapid development of artificial intelligence requires the implementation of hardware systems with bioinspired parallel information processing and presentation and energy efficiency.Electrolyte-gated organic transistors(EGOTs)offer significant advantages as neuromorphic devices due to their ultra-low operation voltages,minimal hardwired connectivity,and similar operation environment as electrophysiology.Meanwhile,ionic–electronic coupling and the relatively low elastic moduli of organic channel materials make EGOTs suitable for interfacing with biology.This review presents an overview of the device architectures based on organic electrochemical transistors and organic field-effect transistors.Furthermore,we review the requirements of low energy consumption and tunable synaptic plasticity of EGOTs in emulating biological synapses and how they are affected by the organic materials,electrolyte,architecture,and operation mechanism.In addition,we summarize the basic operation principle of biological sensory systems and the recent progress of EGOTs as a building block in artificial systems.Finally,the current challenges and future development of the organic neuromorphic devices are discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.U21A6004,62375160,62274180,and 12004389).
文摘The exploration and research of low-cost,environmentally friendly,and sustainable organic semiconductor materials are of immense significance in various fields,including electronics,optoelectronics,and energy conversion.Unfortunately,these semiconductors have almost poor charge transport properties,which range from∼10^(−4) cm^(2)·V^(−1)·s^(−1) to∼10^(−2) cm^(2)·V^(−1)·s^(−1).Vat orange 3,as one of these organic semiconductors,has great potential due to its highly conjugated structure.We obtain high-quality multilayered Vat orange 3 crystals with two-dimensional(2D)growth on h-BN surfaces with thickness of 10–100 nm using physical vapor transport.Raman’s results confirm the stability of the chemical structure of Vat orange 3 during growth.Furthermore,by leveraging the structural advantages of 2D materials,an organic field-effect transistor with a 2D vdW vertical heterostructure is further realized with h-BN encapsulation and multilayered graphene contact electrodes,resulting in an excellent transistor performance with On/Off ratio of 104 and high field-effect mobility of 0.14 cm^(2)·V^(−1)·s^(−1).Our results show the great potential of Vat orange 3 with 2D structures in future nano-electronic applications.Furthermore,we showcase an approach that integrates organic semiconductors with 2D materials,aiming to offer new insights into the study of organic semiconductors.
基金Project supported by the National Natural Science Foundation of China(Grant No.12075316)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.21XNH091)(Q.R.)。
文摘Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through two terminals can be largely controlled by the temperature of the third one.Dynamic response plays an important role in the application of electric devices and also thermal devices,which represents the devices’ability to treat fast varying inputs.In this paper,we systematically study two typical dynamic responses of a thermal transistor,i.e.,the response to a step-function input(a switching process)and the response to a square-wave input.The role of the length L of the control segment is carefully studied.It is revealed that when L is increased,the performance of the thermal transistor worsens badly.Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on L quite well,which agrees with our analytical expectation.However,the detailed power exponents deviate from the expected values noticeably.This implies the violation of the conventional assumptions that we adopt.
基金supported by the National Key R&D Plan of China(Grant 2021YFB3600703)the National Natural Science Foundation(Grant 62204137)of China for Youth,the Open Research Fund Program of Beijing National Research Centre for Information Science and Technology(BR2023KF02009)+1 种基金the National Natural Science Foundation of china(U20A20168,61874065,and 51861145202)the Research Fund from Tsinghua University Initiative Scientific Research Program,the Center for Flexible Electronics Technology of Tsinghua University,and a grant from the Guoqiang Institute,Tsinghua University.
文摘Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1202600 and 2023YFE0208600)in part by the National Natural Science Foundation of China (Grant Nos. 62174082, 92364106, 61921005, 92364204, and 62074075)。
文摘Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. This letter reports a dropout neuronal unit(1R1T-DNU) based on one memristor–one electrolyte-gated transistor with an ultralow energy consumption of 25 p J/spike. A dropout neural network is constructed based on such a device and has been verified by MNIST dataset, demonstrating high recognition accuracies(> 90%) within a large range of dropout probabilities up to40%. The running time can be reduced by increasing dropout probability without a significant loss in accuracy. Our results indicate the great potential of introducing such 1R1T-DNUs in full-hardware neural networks to enhance energy efficiency and to solve the overfitting problem.
基金Project supported by the National Natural Science Foundation of China (Grant No.12065015)the Hongliu Firstlevel Discipline Construction Project of Lanzhou University of Technology。
文摘The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.
基金financial support from NSFC(21704082,21875182,22109125)Key Scientific and Technological Innovation Team Project of Shaanxi Province(2020TD-002)+2 种基金111 Project 2.0(BP2018008)National Key Research and Development Program of China(2022YFE0132400)China Postdoctoral Science Foundation(2021M702585).
文摘The rapid development of organic electrochemical transistors(OECTs)has ushered in a new era in organic electronics,distinguishing itself through its application in a variety of domains,from high-speed logic circuits to sensitive biosensors,and neuromorphic devices like artificial synapses and organic electrochemical random-access memories.Despite recent strides in enhancing OECT performance,driven by the demand for superior transient response capabilities,a comprehensive understanding of the complex interplay between charge and ion transport,alongside electron–ion interactions,as well as the optimization strategies,remains elusive.This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses,emphasizing advancements in device physics and optimization approaches.We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications,as well as the impact of materials,morphology,device structure strategies on optimizing transient responses.This paper not only offers a detailed overview of the current state of the art,but also identifies promising avenues for future research,aiming to drive future performance advancements in diversified applications.
基金supported by the National Key R&D Program of China(2017YFE0131900)the Natural Science Foundation of Chongqing,China(CSTB2023NSCQ-LZX0087)the National Natural Science Foundation of China(62204242,62005182).
文摘The integration between infrared detection and modern microelectronics offers unique opportunities for compact and high-resolution infrared imaging.However,silicon,the cornerstone of modern microelectronics,can only detect light within a limited wavelength range(<1100 nm)due to its bandgap of 1.12 eV,which restricts its utility in the infrared detection realm.Herein,a photo-driven fin field-effect transistor is presented,which breaks the spectral response constraint of conventional silicon detectors while achieving sensitive infrared detection.This device comprises a fin-shaped silicon channel for charge transport and a lead sulfide film for infrared light harvesting.The lead sulfide film wraps the silicon channel to form a“three-dimensional”infrared-sensitive gate,enabling the photovoltage generated at the lead sulfide-silicon junction to effectively modulate the channel conductance.At room temperature,this device realizes a broadband photodetection from visible(635 nm)to short-wave infrared regions(2700 nm),surpassing the working range of the regular indium gallium arsenide and germanium detectors.Furthermore,it exhibits low equivalent noise powers of 3.2×10^(-12) W·Hz^(-1/2) and 2.3×10^(-11) W·Hz^(-1/2) under 1550 nm and 2700 nm illumination,respectively.These results highlight the significant potential of photo-driven fin field-effect transistors in advancing uncooled silicon-based infrared detection.
文摘氧化物TFT(Thin Film Transistor)源漏极短路(Gate Data Short,DGS)缺陷导致显示品质恶化和产品报废,明确DGS原理、识别影响因素并输出解决方案对确保产品良率和品质具有积极意义。本文首先确认了DGS宏观现象和微观形貌,随后探究了栅极绝缘层(Gate Insulator,GI)介电损耗和耐压强度的关系,统计了不同产品在点灯恶化实验中的DGS发生率,明确了产品栅极电压、刷新率对DGS的影响。将实验现象和调研的DGS机理匹配,分析了氧化物TFT DGS高于非晶硅TFT的原因。结果表明,DGS的本质是栅极绝缘层耐压强度不足而导致的GI介电击穿,GI介电损耗、栅压和刷新率均是影响DGS的显著因子。这些因子在Cu扩散、Cu电迁移机理的相互作用下,降低了GI有效厚度,增加了GI热击穿风险,最终造成了DGS。产线可行的DGS抑制措施有两种:降低叠层GI的SiO_(x)厚度比例,减少叠层栅极绝缘层介电损耗,抑制热击穿;下调TFT栅压,抑制Cu离子扩散和电迁移。将上述措施作为改善方案进行实验测试,面板DGS发生率下降73%。该方案成功抑制了氧化物面板DGS发生率,提升了产品品质,为氧化物TFT制程优化提供了参考。
文摘金属氧化物薄膜晶体管(Metal oxide thin film transistors,MOTFTs)因其具有较高的载流子迁移率和较好的电学稳定性,在大尺寸发光显示驱动背板应用方面极具潜力。此外,MOTFTs与非晶硅薄膜晶体管的制备工艺兼容,制造成本较低,具有较大市场竞争优势。然而,衡量MOTFTs性能的两个关键指标——迁移率和稳定性之间的矛盾限制了其高端显示应用。因此,开发高迁移率兼具高稳定性的MOTFTs成为研究热点和产业竞争焦点。大量研究表明,稀土掺杂氧化物有源半导体材料体系有望实现这一目标。本文重点综述兼具高迁移率和高稳定性的稀土掺杂氧化物材料设计及MOTFTs已达到的性能,探讨稀土掺杂金属氧化物薄膜晶体管(RE-MOTFTs)面临的挑战和发展潜力。