A constructive method was presented to design a global robust and adaptive output feedback controller for dynamic positioning of surface ships under environmental disturbances induced by waves, wind, and ocean current...A constructive method was presented to design a global robust and adaptive output feedback controller for dynamic positioning of surface ships under environmental disturbances induced by waves, wind, and ocean currents. The ship's parameters were not required to be known. An adaptive observer was first designed to estimate the ship's velocities and parameters. The ship position measurements were also passed through the adaptive observer to reduce high frequency measurement noise from entering the control system. Using these estimate signals, the control was then designed based on Lyapunov's direct method to force the ship's position and orientation to globally asymptotically converge to desired values. Simulation results illustrate the effectiveness of the proposed control system. In conclusion, the paper presented a new method to design an effective control system for dynamic positioning of surface ships.展开更多
This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of...This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.展开更多
This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a...This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a fuzzy controller is designedbased on the state observer. A sufficient condition for the existence of fuzzycontroller is given in terms of the linear matrix inequalities (LMIs) and the adaptivelaw. Based on Lyapunov stability theorem, the proposed fuzzy control scheme suchthat the desired H∞performance is achieved in the sense that all the closed-loopsignals are uniformly ultimately bounded (UUB). Simulation results indicate theeffectiveness of the developed control scheme. In this paper, a less conservativefuzzy tracking controller is proposed, where the matching condition and the upperbound are avoided. Comparing with the existing works, the dimension of the LMIsof this paper is reduced.展开更多
The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such t...The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such that the closed-loop system is stable and satisfies H2 performance for all admissible uncertainties. Furthermore, the solution of the controller is given. An H2 output feedback controller is designed in the airborne dispenser pitch channel, and the simulation results show that the controller is effective.展开更多
文摘A constructive method was presented to design a global robust and adaptive output feedback controller for dynamic positioning of surface ships under environmental disturbances induced by waves, wind, and ocean currents. The ship's parameters were not required to be known. An adaptive observer was first designed to estimate the ship's velocities and parameters. The ship position measurements were also passed through the adaptive observer to reduce high frequency measurement noise from entering the control system. Using these estimate signals, the control was then designed based on Lyapunov's direct method to force the ship's position and orientation to globally asymptotically converge to desired values. Simulation results illustrate the effectiveness of the proposed control system. In conclusion, the paper presented a new method to design an effective control system for dynamic positioning of surface ships.
文摘This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.
文摘This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a fuzzy controller is designedbased on the state observer. A sufficient condition for the existence of fuzzycontroller is given in terms of the linear matrix inequalities (LMIs) and the adaptivelaw. Based on Lyapunov stability theorem, the proposed fuzzy control scheme suchthat the desired H∞performance is achieved in the sense that all the closed-loopsignals are uniformly ultimately bounded (UUB). Simulation results indicate theeffectiveness of the developed control scheme. In this paper, a less conservativefuzzy tracking controller is proposed, where the matching condition and the upperbound are avoided. Comparing with the existing works, the dimension of the LMIsof this paper is reduced.
基金Sponsored by the Ministerial Level Advanced Research Foundation (G423BQ0110)
文摘The problem of H2 output feedback control for generalized system with structural uncertainties is studied using linear matrix inequality approach. A sufficient condition Of linear matrix inequality is presented such that the closed-loop system is stable and satisfies H2 performance for all admissible uncertainties. Furthermore, the solution of the controller is given. An H2 output feedback controller is designed in the airborne dispenser pitch channel, and the simulation results show that the controller is effective.