This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of...This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.展开更多
This paper studies the distributed H∞control problem of identical linear time invariant multi-agent systems subject to external disturbances. A directed graph containing a spanning tree is used to model the communica...This paper studies the distributed H∞control problem of identical linear time invariant multi-agent systems subject to external disturbances. A directed graph containing a spanning tree is used to model the communication topology. Based on the relative states of the neighbor agents and a subset of absolute states of the agents, distributed static H∞controllers are proposed. The concept of an H∞performance region is extended to the directed graph situation. Then the results are used to solve the leader–follower H∞consensus problem. Sufficient conditions are proposed based on bounded real lemma and algebraic graph theory. The effectiveness of the theoretical results is illustrated via numerical simulations.展开更多
This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer fu...This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer function matrix from the disturbance to the performance variable is satisfactorily small. It is shown that the disturbance rejection problem of a dynamical network can be solved by analysing the H∞ control problem of a set of independent systems whose dimensions are equal to that of a single node. A counter-intuitive result is that the disturbance rejection level of the whole network with a diffusive coupling will never be better than that of an isolated node. To improve this, local feedback injections are applied to a small fraction of the nodes in the network. Some criteria for possible performance improvement are derived in terms of linear matrix inequalities. It is further demonstrated via a simulation example that one can indeed improve the disturbance rejection level of the network by pinning the nodes with higher degrees than pinning those with lower degrees.展开更多
In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain Operating c...In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain Operating conditions and the design method were then analyzed so that the control problem could be expressed as a mathematical optimization problem. This permitted the use of linear matrix inequalities (LMI) to solve for the Hv controller for the system. When considering different actuator failures, these conditions were then also mathematically expressed, allowing the H∞ robust controller to solve for these events and thus be fault-tolerant. Finally, simulation results showed that the H∞ robust fault-tolerant controller could provide precise AUV navigation control with strong robustness.展开更多
This paper focuses on the application of H_∞preview control in automatic carrier landing system(ACLS)for carrier-based aircraft.Due to the mutual movement between aircraft and carrier,the landing process becomes cons...This paper focuses on the application of H_∞preview control in automatic carrier landing system(ACLS)for carrier-based aircraft.Due to the mutual movement between aircraft and carrier,the landing process becomes considerably more challenging compared to a conventional runway landing.ACLS systems mitigate this by predicting deck motion and generating ideal glide slope path for tracking.Although,this predicted glide slope information is available in advance,conventional control structures are still unable to use this future information.H_∞preview control has the ability to utilize this future information for improving tracking response and disturbance rejection.The process of incorporating preview information into ACLS framework and synthesizing the H_∞preview controller is presented.The methodology is verified using the example of F/A-18 automatic carrier landing problem and results are presented.展开更多
The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the ...The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.展开更多
We scrutinize the problem of robust H∞control for a class of Markovian jump uncertain systems with interval timevarying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite...We scrutinize the problem of robust H∞control for a class of Markovian jump uncertain systems with interval timevarying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite-state Markov chain. The main aim is to design a delay-dependent robust H∞control synthesis which ensures the mean-square asymptotic stability of the equilibrium point. By constructing a suitable Lyapunov–Krasovskii functional(LKF), sufficient conditions for delay-dependent robust H∞control criteria are obtained in terms of linear matrix inequalities(LMIs). The advantage of the proposed method is illustrated by numerical examples. The results are also compared with the existing results to show the less conservativeness.展开更多
We consider an H∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic sta...We consider an H∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic stability of the master-slave synchronization. Moreover, this controller reduces the effect of an external disturbance to the H∞ norm constraint. A numerical example is given to validate the proposed synchronization scheme.展开更多
This paper studies consensus control problems for a class of second-order multi-agent systems without relative velocity measurement. Some dynamic neighbour-based rules are adopted for the agents in the presence of ext...This paper studies consensus control problems for a class of second-order multi-agent systems without relative velocity measurement. Some dynamic neighbour-based rules are adopted for the agents in the presence of external disturbances. A sufficient condition is derived to make all agents achieve consensus while satisfying desired H∞ performance. Finally, numerical simulations are provided to show the effectiveness of our theoretical results.展开更多
This paper is concerned with the problem of delay-dependent robust H∞control for a class of uncertain systems with two additive time-varying delays. A new suitable Lyapunov–Krasovskii functional(LKF) with triple i...This paper is concerned with the problem of delay-dependent robust H∞control for a class of uncertain systems with two additive time-varying delays. A new suitable Lyapunov–Krasovskii functional(LKF) with triple integral terms is constructed and a tighter upper bound of the derivative of the LKF is derived. By applying a convex optimization technique, new delay-dependent robust H∞stability criteria are derived in terms of linear matrix inequalities(LMI). Based on the stability criteria, a state feedback controller is designed such that the closed-loop system is asymptotically stable.Finally, numerical examples are given to illustrate the effectiveness of the proposed method. Comparison results show that our results are less conservative than the existing methods.展开更多
In this paper, a design method by using MATLAB and the flowchart are presented. The general problems and two examples in design are discussed in detail. It is shown that H ∞ controller...In this paper, a design method by using MATLAB and the flowchart are presented. The general problems and two examples in design are discussed in detail. It is shown that H ∞ controllers designed with the new procedure presented in this paper can meet the requirements in suppressing the interference and noises and frequency shaping for different control plants and problems.展开更多
This paper studies the problem of robust H∞ control of piecewise-linear chaotic systems with random data loss. The communication links between the plant and the controller are assumed to be imperfect (that is, data ...This paper studies the problem of robust H∞ control of piecewise-linear chaotic systems with random data loss. The communication links between the plant and the controller are assumed to be imperfect (that is, data loss occurs intermittently, which appears typically in a network environment). The data loss is modelled as a random process which obeys a Bernoulli distribution. In the face of random data loss, a piecewise controller is designed to robustly stabilize the networked system in the sense of mean square and also achieve a prescribed H∞ disturbance attenuation performance based on a piecewise-quadratic Lyapunov function. The required H∞ controllers can be designed by solving a set of linear matrix inequalities (LMIs). Chua's system is provided to illustrate the usefulness and applicability of the developed theoretical results.展开更多
In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturba...In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturbance, interval time-varying,and distributed delay. The aim is to design a delay-dependent robust H∞control which ensures the robust asymptotic stability of the given system and to express it in the form of linear matrix inequalities(LMIs). Numerical examples are given to demonstrate the effectiveness of the proposed method. The results are also compared with the existing results to show its conservativeness.展开更多
This paper is concerned with the problem of robust H∞ control for a novel class of uncertain linear continuous-time systems with heterogeneous time-varying state/input delays and norm-bounded parameter uncertainties....This paper is concerned with the problem of robust H∞ control for a novel class of uncertain linear continuous-time systems with heterogeneous time-varying state/input delays and norm-bounded parameter uncertainties. The objective is to design a static output feedback controller such that the closed-loop system is asymptotically stable while satisfying a prescribed H∞ performance level for all admissible uncertainties. By constructing an appropriate Lyapunov-Krasvskii functional, a delay-dependent stability criterion of the closed-loop system is presented with the help of the Jensen integral inequality. From the derived criterion, the solutions to the problem are formulated in terms of linear matrix inequalities and hence are tractable numerically. A simulation example is given to illustrate the effectiveness of the proposed design method,展开更多
A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary an...A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary and sufficient condition for the existence of a unique solution to the H2/H∞ control problem is derived. The resulting solution is given by the solution of an uncontrolled forward backward stochastic differential equation with random jumps.展开更多
The performances of a single magnet model, which is the simplified model of Maglev suspension, are analyzed. The H ∞ controller synthesized for the single magnet model is presented. The synthesis results show that...The performances of a single magnet model, which is the simplified model of Maglev suspension, are analyzed. The H ∞ controller synthesized for the single magnet model is presented. The synthesis results show that the control performance and robustness performance are satisfactory and the application of the H ∞ controller to Maglev suspension is feasible and effective.展开更多
In this paper, the nonlinear singular stabilization, H∞ control problem of systems with ordinary homogeneous properties is considered. At first, we discuss the stabilization problems of nonlinear systems with homogen...In this paper, the nonlinear singular stabilization, H∞ control problem of systems with ordinary homogeneous properties is considered. At first, we discuss the stabilization problems of nonlinear systems with homogeneous. Secondly, by vitue of Hamilton-Jacobi-Isaacs equations or inequalities, we solve regular H∞ of nonlinear systems with homogeneous properties. To overcome the H∞ problem of singular nonlinear system, we try to transform inputs of the singular nonlinear system into two parts: regular part input and singular part input. Following the previous results, we solve the singular nonlinear system H∞ control, we give the Lyapunov function and the state feedback controller of the singular nonlinear systems with homogeneous properties.展开更多
Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking com...Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking components.Stabilizing control is applied to track angular velocity order and control multi-disturbance under airborne condition,and its robustness should be very good;tracking control is applied to compensate tracking error of angular position.A mathematical model is established by taking the control of yaw loop as example.H∞ stabilizing controller is designed by taking the advantage of H∞ control robustness and combining with Kalman filter.A fuzzy control is introduced in general PID control to design a decoupled fuzzy Smith estimating PID controller for tracking control.Simulation research shows that the control effect of airborne electro-optical tracking and sighting system based on fuzzy PID and H∞ control is good,especially when the model parameters change and the multi-disturbance exists,the system capability has little fall,but this system still can effectively track a target.展开更多
文摘This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.
文摘This paper studies the distributed H∞control problem of identical linear time invariant multi-agent systems subject to external disturbances. A directed graph containing a spanning tree is used to model the communication topology. Based on the relative states of the neighbor agents and a subset of absolute states of the agents, distributed static H∞controllers are proposed. The concept of an H∞performance region is extended to the directed graph situation. Then the results are used to solve the leader–follower H∞consensus problem. Sufficient conditions are proposed based on bounded real lemma and algebraic graph theory. The effectiveness of the theoretical results is illustrated via numerical simulations.
基金Project supported by the National Natural Science Foundation of China (Grant No 10832006)the Key Projects of Educational Ministry of China (Grant No 107110)
文摘This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer function matrix from the disturbance to the performance variable is satisfactorily small. It is shown that the disturbance rejection problem of a dynamical network can be solved by analysing the H∞ control problem of a set of independent systems whose dimensions are equal to that of a single node. A counter-intuitive result is that the disturbance rejection level of the whole network with a diffusive coupling will never be better than that of an isolated node. To improve this, local feedback injections are applied to a small fraction of the nodes in the network. Some criteria for possible performance improvement are derived in terms of linear matrix inequalities. It is further demonstrated via a simulation example that one can indeed improve the disturbance rejection level of the network by pinning the nodes with higher degrees than pinning those with lower degrees.
基金Supported by the Heilongjiang Postdoctoral Foundation under Grant No. LH-04010
文摘In order to improve the security and reliability for autonomous underwater vehicle (AUV) navigation, an H∞ robust fault-tolerant controller was designed after analyzing variations in state-feedback gain Operating conditions and the design method were then analyzed so that the control problem could be expressed as a mathematical optimization problem. This permitted the use of linear matrix inequalities (LMI) to solve for the Hv controller for the system. When considering different actuator failures, these conditions were then also mathematically expressed, allowing the H∞ robust controller to solve for these events and thus be fault-tolerant. Finally, simulation results showed that the H∞ robust fault-tolerant controller could provide precise AUV navigation control with strong robustness.
基金supported by the National Natural Science Foundation of China (Nos.61973158, 61304223, 61673209)the Aeronautical Science Foundation (NO.2016ZA52009)the Fundamental Research Funds for the Central Universities (Nos.NS2017015, NJ20170005)
文摘This paper focuses on the application of H_∞preview control in automatic carrier landing system(ACLS)for carrier-based aircraft.Due to the mutual movement between aircraft and carrier,the landing process becomes considerably more challenging compared to a conventional runway landing.ACLS systems mitigate this by predicting deck motion and generating ideal glide slope path for tracking.Although,this predicted glide slope information is available in advance,conventional control structures are still unable to use this future information.H_∞preview control has the ability to utilize this future information for improving tracking response and disturbance rejection.The process of incorporating preview information into ACLS framework and synthesizing the H_∞preview controller is presented.The methodology is verified using the example of F/A-18 automatic carrier landing problem and results are presented.
文摘The time domain guideposts requirements of a pump-motor system is transfered into a series of constraints which express the robust performance upper bound and regional poles limits of the closed loop system. Then the servo system control problem is transferred into the problem of robust performance optimizing under regional poles constrains described by linear matrix inequality (LMI). These LMIs are easy to solve through the Matlab LMI-toolbox. Simulations indicate that the controller has excellent dynamic, static and disturbance rejection performance, and the control system is robust and has perfect H2 performance to the bounded external torque disturbance.
基金Project supported by Department of Science and Technology(DST)under research project No.SR/FTP/MS-039/2011
文摘We scrutinize the problem of robust H∞control for a class of Markovian jump uncertain systems with interval timevarying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite-state Markov chain. The main aim is to design a delay-dependent robust H∞control synthesis which ensures the mean-square asymptotic stability of the equilibrium point. By constructing a suitable Lyapunov–Krasovskii functional(LKF), sufficient conditions for delay-dependent robust H∞control criteria are obtained in terms of linear matrix inequalities(LMIs). The advantage of the proposed method is illustrated by numerical examples. The results are also compared with the existing results to show the less conservativeness.
基金Project supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (Grant No.2010-0009373)
文摘We consider an H∞ synchronization problem in nonlinear Bloch systems. Based on Lyapunov stability theory and linear matrix inequality formulation, a dynamic feedback controller is designed to guarantee asymptotic stability of the master-slave synchronization. Moreover, this controller reduces the effect of an external disturbance to the H∞ norm constraint. A numerical example is given to validate the proposed synchronization scheme.
基金supported by the National High Technology Research and Development Program of China (Grant Nos. 2007AA041104,2007AA041105 and 2007AA04Z163)
文摘This paper studies consensus control problems for a class of second-order multi-agent systems without relative velocity measurement. Some dynamic neighbour-based rules are adopted for the agents in the presence of external disturbances. A sufficient condition is derived to make all agents achieve consensus while satisfying desired H∞ performance. Finally, numerical simulations are provided to show the effectiveness of our theoretical results.
基金Project supported by the Fund from the Department of Science and Technology of India(Grant No.SR/FTP/MS-039/2011)
文摘This paper is concerned with the problem of delay-dependent robust H∞control for a class of uncertain systems with two additive time-varying delays. A new suitable Lyapunov–Krasovskii functional(LKF) with triple integral terms is constructed and a tighter upper bound of the derivative of the LKF is derived. By applying a convex optimization technique, new delay-dependent robust H∞stability criteria are derived in terms of linear matrix inequalities(LMI). Based on the stability criteria, a state feedback controller is designed such that the closed-loop system is asymptotically stable.Finally, numerical examples are given to illustrate the effectiveness of the proposed method. Comparison results show that our results are less conservative than the existing methods.
文摘In this paper, a design method by using MATLAB and the flowchart are presented. The general problems and two examples in design are discussed in detail. It is shown that H ∞ controllers designed with the new procedure presented in this paper can meet the requirements in suppressing the interference and noises and frequency shaping for different control plants and problems.
基金Project partially supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.60904004)the Key Youth Science and Technology Foundation of University of Electronic Science and Technology of China (Grant No.L08010201JX0720)
文摘This paper studies the problem of robust H∞ control of piecewise-linear chaotic systems with random data loss. The communication links between the plant and the controller are assumed to be imperfect (that is, data loss occurs intermittently, which appears typically in a network environment). The data loss is modelled as a random process which obeys a Bernoulli distribution. In the face of random data loss, a piecewise controller is designed to robustly stabilize the networked system in the sense of mean square and also achieve a prescribed H∞ disturbance attenuation performance based on a piecewise-quadratic Lyapunov function. The required H∞ controllers can be designed by solving a set of linear matrix inequalities (LMIs). Chua's system is provided to illustrate the usefulness and applicability of the developed theoretical results.
基金Project supported by the Fund from the Department of Science and Technology(DST)(Grant No.SR/FTP/MS-039/2011)
文摘In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturbance, interval time-varying,and distributed delay. The aim is to design a delay-dependent robust H∞control which ensures the robust asymptotic stability of the given system and to express it in the form of linear matrix inequalities(LMIs). Numerical examples are given to demonstrate the effectiveness of the proposed method. The results are also compared with the existing results to show its conservativeness.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61104138)the Guangdong Natural Science Foundation,China (Grant No. S2011040001704)the Foundation for Distinguished Young Talents in Higher Education of Guangdong,China (Grant No. LYM10074)
文摘This paper is concerned with the problem of robust H∞ control for a novel class of uncertain linear continuous-time systems with heterogeneous time-varying state/input delays and norm-bounded parameter uncertainties. The objective is to design a static output feedback controller such that the closed-loop system is asymptotically stable while satisfying a prescribed H∞ performance level for all admissible uncertainties. By constructing an appropriate Lyapunov-Krasvskii functional, a delay-dependent stability criterion of the closed-loop system is presented with the help of the Jensen integral inequality. From the derived criterion, the solutions to the problem are formulated in terms of linear matrix inequalities and hence are tractable numerically. A simulation example is given to illustrate the effectiveness of the proposed design method,
基金supported by the Doctoral foundation of University of Jinan(XBS1213)the National Natural Science Foundation of China(11101242)
文摘A necessary maximum principle is given for nonzero-sum stochastic Oltterential games with random jumps. The result is applied to solve the H2/H∞ control problem of stochastic systems with random jumps. A necessary and sufficient condition for the existence of a unique solution to the H2/H∞ control problem is derived. The resulting solution is given by the solution of an uncontrolled forward backward stochastic differential equation with random jumps.
文摘The performances of a single magnet model, which is the simplified model of Maglev suspension, are analyzed. The H ∞ controller synthesized for the single magnet model is presented. The synthesis results show that the control performance and robustness performance are satisfactory and the application of the H ∞ controller to Maglev suspension is feasible and effective.
基金Supported by the Education Department of Henan Province(200511517007)
文摘In this paper, the nonlinear singular stabilization, H∞ control problem of systems with ordinary homogeneous properties is considered. At first, we discuss the stabilization problems of nonlinear systems with homogeneous. Secondly, by vitue of Hamilton-Jacobi-Isaacs equations or inequalities, we solve regular H∞ of nonlinear systems with homogeneous properties. To overcome the H∞ problem of singular nonlinear system, we try to transform inputs of the singular nonlinear system into two parts: regular part input and singular part input. Following the previous results, we solve the singular nonlinear system H∞ control, we give the Lyapunov function and the state feedback controller of the singular nonlinear systems with homogeneous properties.
基金Sponsored by Foundation for Excellent Young Teachers in Universities of Henan Province of China(2002[121])
文摘Airborne electro-optical tracking and sighting system is a three-degree-of-freedom angular position servo system which is influenced by multi-disturbance,and its control system consists of stabilizing and tracking components.Stabilizing control is applied to track angular velocity order and control multi-disturbance under airborne condition,and its robustness should be very good;tracking control is applied to compensate tracking error of angular position.A mathematical model is established by taking the control of yaw loop as example.H∞ stabilizing controller is designed by taking the advantage of H∞ control robustness and combining with Kalman filter.A fuzzy control is introduced in general PID control to design a decoupled fuzzy Smith estimating PID controller for tracking control.Simulation research shows that the control effect of airborne electro-optical tracking and sighting system based on fuzzy PID and H∞ control is good,especially when the model parameters change and the multi-disturbance exists,the system capability has little fall,but this system still can effectively track a target.