针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间...针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间序列中的所有突变点,并充分利用突变点信息修正由于经济环境和突发事件引起的预测偏差,大大提高了传统时序外推预测模型的精度。华东地区的实际算例结果表明了该模型的有效性。展开更多
脑力负荷是人机系统中人的绩效的一个重要因素。对飞行员脑力负荷展开研究,为飞机驾驶舱设计及其仪表设备的符合性验证提供参考。通过实验得到生理测量、绩效测量、主观测量的各项指标。利用单因素方差分析法提取对飞行员脑力负荷的敏...脑力负荷是人机系统中人的绩效的一个重要因素。对飞行员脑力负荷展开研究,为飞机驾驶舱设计及其仪表设备的符合性验证提供参考。通过实验得到生理测量、绩效测量、主观测量的各项指标。利用单因素方差分析法提取对飞行员脑力负荷的敏感指标。结果表明:注视频率、注视总时间、眨眼率、平均瞳孔直径变化率、NASA_TLX(NASA task load index)、正确率的主效应显著(P<0.05)。采用自组织算法GMDH(group method of data handling)与线性回归的结合方法,建立飞行员脑力负荷预测模型;并且得到模型拟合度为85.47%。因此,GMDH与线性回归的结合方法可以较好地预测飞行员脑力负荷。展开更多
文摘针对我国当前经济、政策变动的大背景,提出了采用数据分组处理方法GMDH(group method of data handling)结合多结构突变理论,实现时序突变点自动搜索建模,建立了中长期负荷预测的GMDH多结构自动搜索模型。该模型能够客观准确地搜索时间序列中的所有突变点,并充分利用突变点信息修正由于经济环境和突发事件引起的预测偏差,大大提高了传统时序外推预测模型的精度。华东地区的实际算例结果表明了该模型的有效性。
文摘脑力负荷是人机系统中人的绩效的一个重要因素。对飞行员脑力负荷展开研究,为飞机驾驶舱设计及其仪表设备的符合性验证提供参考。通过实验得到生理测量、绩效测量、主观测量的各项指标。利用单因素方差分析法提取对飞行员脑力负荷的敏感指标。结果表明:注视频率、注视总时间、眨眼率、平均瞳孔直径变化率、NASA_TLX(NASA task load index)、正确率的主效应显著(P<0.05)。采用自组织算法GMDH(group method of data handling)与线性回归的结合方法,建立飞行员脑力负荷预测模型;并且得到模型拟合度为85.47%。因此,GMDH与线性回归的结合方法可以较好地预测飞行员脑力负荷。