In a measurement system, new representation methods are necessary to maintain the uncertainty and to supply more powerful ability for reasoning and transformation between numerical system and symbolic system. A grey m...In a measurement system, new representation methods are necessary to maintain the uncertainty and to supply more powerful ability for reasoning and transformation between numerical system and symbolic system. A grey measurement system is discussed from the point of view of intelligent sensors and incomplete information processing compared with a numerical and symbolized measurement system. The methods of grey representation and information processing are proposed for data collection and reasoning. As a case study, multi-ultrasonic sensor systems are demonstrated to verify the effectiveness of the proposed methods.展开更多
Grey sequence generation can draw out and develop implied rules of the original data. Different kinds of generation methods were summarized and classified into two types: partial generation and whole generation. The a...Grey sequence generation can draw out and develop implied rules of the original data. Different kinds of generation methods were summarized and classified into two types: partial generation and whole generation. The average generation and stepwise ratio generation is disussed , the preference generation is regard as a special case of proportional division based on analysis geometric theory, propose an idea of using concave and convex status of discrete data to determine the generation coefficient. Based on the stepwise and smooth ratio generation, a tendency average generation is proposed and have a comparison using the data provided in papers listed in the references. The comparison proves that the new generation is better than the other two generations and errors are obviously reduced.展开更多
In the evaluation of some simulation systems, only small samples data are gotten due to the limited conditions. In allusion to the evaluation problem of small sample data, an interval estimation approach with the impr...In the evaluation of some simulation systems, only small samples data are gotten due to the limited conditions. In allusion to the evaluation problem of small sample data, an interval estimation approach with the improved grey confidence degree is proposed.On the basis of the definition of grey distance, three kinds of definition of the grey weight for every sample element in grey estimated value are put forward, and then the improved grey confidence degree is designed. In accordance with the new concept, the grey interval estimation for small sample data is deduced. Furthermore,the bootstrap method is applied for more accurate grey confidence interval. Through resampling of the bootstrap, numerous small samples with the corresponding confidence intervals can be obtained. Then the final confidence interval is calculated from the union of these grey confidence intervals. In the end, the simulation system evaluation using the proposed method is conducted. The simulation results show that the reasonable confidence interval is acquired, which demonstrates the feasibility and effectiveness of the proposed method.展开更多
In this paper, a new method for mobile robot map building based on grey system theory is presented, by which interpretation and integration of sonar readings can be solved robustly and efficiently. The conception of &...In this paper, a new method for mobile robot map building based on grey system theory is presented, by which interpretation and integration of sonar readings can be solved robustly and efficiently. The conception of 'grey number is introduced to model and handle the uncertainty of sonar reading. A new data fusion approach based on grey system theory is proposed to construct environment model. Map building experiments are performed both on a platform of simulation and a real mobile robot. Experimental results show that our method is robust and accurate.展开更多
In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indi...In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.展开更多
To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weap...To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weapon systems by combining grey relational analysis and TOPSIS is proposed. The model aggregates the grey relational grade and the distance to a new integrated closeness and reflects not only the trend but also the situation of the alternative. The example illuminates that the model is effective for the effectiveness evaluation of weapon systems.展开更多
Based on the variation of discrete surface,a new grey relational analysis model,called the grey variation relational ana-lysis(GVRA)model,is proposed in this paper.Meanwhile,the proposed model avoids the inconsistent ...Based on the variation of discrete surface,a new grey relational analysis model,called the grey variation relational ana-lysis(GVRA)model,is proposed in this paper.Meanwhile,the proposed model avoids the inconsistent results caused by diffe-rent construction of discrete surface of panel data or the change in the order of indicators or objects in existing grey relational analysis models.Firstly,the submatrix of the sample matrix is given according to the permutation and combination theory.Secondly,the amplitude of the submatrix is calculated and the variation of discrete surface is obtained.Then,a grey relational coefficient is presented by variation difference,and the GVRA model is established.Furthermore,the properties of the pro-posed model,such as normality,symmetry,reflexivity,transla-tion invariant,and number multiplication invariant,are also veri-fied.Finally,the proposed model is used to identify the driving factors of haze in the cities along the Yellow River in Shandong Province,China.The result reveals that the proposed model can effectively measure the relationship between panel data.展开更多
A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) proble...A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.展开更多
Aiming at the characteristics of multi-stage and(extremely)small samples of the identification problem of key effectiveness indexes of weapon equipment system-of-systems(WESoS),a Bayesian intelligent identification an...Aiming at the characteristics of multi-stage and(extremely)small samples of the identification problem of key effectiveness indexes of weapon equipment system-of-systems(WESoS),a Bayesian intelligent identification and inference model for system effectiveness assessment indexes based on dynamic grey incidence is proposed.The method uses multi-layer Bayesian techniques,makes full use of historical statistics and empirical information,and determines the Bayesian estima-tion of the incidence degree of indexes,which effectively solves the difficulties of small sample size of effectiveness indexes and difficulty in obtaining incidence rules between indexes.Sec-ondly,The method quantifies the incidence relationship between evaluation indexes and combat effectiveness based on Bayesian posterior grey incidence,and then identifies key system effec-tiveness evaluation indexes.Finally,the proposed method is applied to a case of screening key effectiveness indexes of a missile defensive system,and the analysis results show that the proposed method can fuse multi-moment information and extract multi-stage key indexes,and has good data extraction capability in the case of small samples.展开更多
The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts....The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.It is a vague and fuzzy concept for the wider community of engineers.The importance of remote sensing of temperature by measuring IR radiation has been recognized in a wide range of industrial,medical,and environ⁃mental uses.One of the major sources of errors in IR radiometry is the emissivity of the surface being measured.In real experiments,emissivity may be influenced by many factors:surface texture,spectral properties,oxida⁃tion,and aging of surfaces.While commercial blackbodies are prevalent,the much-needed grey bodies with a known emissivity,are unavailable.This study describes how to achieve a calibrated and stable emissivity with a blackbody,a perforated screen,and a reliable and linear novel IR thermal sensor,18 dubbed TMOS.The Digital TMOS is now a low-cost commercial product,it requires low power,and it has a small form factor.The method⁃ology is based on two-color measurements,with two different optical filters,with selected wavelengths conform⁃ing to the grey body definition of the use case under study.With a photochemically etched perforated screen,the effective emissivity of the screen is simply the hole density area of the surface area that emits according to the blackbody temperature radiation.The concept is illustrated with ray tracing simulations,which demonstrate the approach.Measured results are reported.展开更多
Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be so...Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be solved. A comprehensive evaluation method is proposed, which combines grey relational analysis (GRA) and cloud model, to evaluate the anti-jamming performances of Link-16. Firstly, on the basis of establishing the anti-jamming performance evaluation indicator system of Link-16, the linear combination of analytic hierarchy process(AHP) and entropy weight method (EWM) are used to calculate the combined weight. Secondly, the qualitative and quantitative concept transformation model, i.e., the cloud model, is introduced to evaluate the anti-jamming abilities of Link-16 under each jamming scheme. In addition, GRA calculates the correlation degree between evaluation indicators and the anti-jamming performance of Link-16, and assesses the best anti-jamming technology. Finally, simulation results prove that the proposed evaluation model can achieve the objective of feasible and practical evaluation, which opens up a novel way for the research of anti-jamming performance evaluations of Link-16.展开更多
Grey relational analysis is an important part of the grey systems theory, and it is the basis of the grey clustering analysis, grey decision-making and grey controlling. To research whether grey relational models sati...Grey relational analysis is an important part of the grey systems theory, and it is the basis of the grey clustering analysis, grey decision-making and grey controlling. To research whether grey relational models satisfy the four grey relational theorems, several kinds of grey relational models are commented. Some problems including the properties of normality, pair symmetry and wholeness are discussed. The phenomenon that the lower value of almost each grey relational model is not equal to zero is proved. The contradiction problems between the properties of wholeness and pair symmetry are verified. Finally, several propositions are constructed to explain the above problems.展开更多
In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.B...In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.By mining the geometric features of interval grey number sequences on a two-dimensional surface,all the interval grey numbers are converted into real numbers by means of certain algorithm,and then the prediction model is established based on those real number sequences.The entire process avoids the algebraic operations of grey number,and the prediction problem of interval grey number is usefully solved.Ultimately,through an example's program simulation,the validity and practicability of this novel model are verified.展开更多
This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on th...This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.展开更多
This paper aims to study a novel expansion discrete grey forecasting model, which could aggregate input information more effectively. In general, existing multi-factor grey forecasting models, such as one order and h ...This paper aims to study a novel expansion discrete grey forecasting model, which could aggregate input information more effectively. In general, existing multi-factor grey forecasting models, such as one order and h variables grey forecasting model (GM (1, h)), always aggregate the main system variable and independent variables in a linear form rather than a nonlinear form, while a nonlinear form could be used in more cases than the linear form. And the nonlinear form could aggregate collinear independent factors, which widely lie in many multi-factor forecasting problems. To overcome this problem, a new approach, named as the Solow residual method, is proposed to aggregate independent factors. And a new expansion model, feedback multi-factor discrete grey forecasting model based on the Solow residual method (abbreviated as FDGM (1, h)), is proposed accordingly. Then the feedback control equation and the parameters' solution of the FDGM (1, h) model are given. Finally, a real application is used to test the modelling accuracy of the FDGM (1, h) model. Results show that the FDGM (1, h) model is much better than the nonhomogeneous discrete grey forecasting model (NDGM) and the GM (1, h) model.展开更多
To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on princip...To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.展开更多
In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of ...In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of multivariate time series on different scales are pooled and aggregated by spatial pyramid pooling to construct n levels feature pooling matrices on the same scale. Secondly,Deng's multivariate grey incidence model is introduced to measure the degree of incidence between feature pooling matrices at each level. Thirdly, grey incidence degrees at each level are integrated into a global incidence degree. Finally, the performance of the proposed model is verified on two data sets compared with a variety of algorithms. The results illustrate that the proposed model is more effective and efficient than other similarity measure algorithms.展开更多
Based on the distance of interval numbers and the two-stage decision methods, this paper expands the decision model of grey target into some situation under which the decision information and target weights are the in...Based on the distance of interval numbers and the two-stage decision methods, this paper expands the decision model of grey target into some situation under which the decision information and target weights are the interval numbers at the same time. It also gives the optimization method of weights in the grey target. We get the optimum coordinated vector utilizing the combination assigning method, based on the local optimization of various schemes. So it can shift the weights of interval number into real number form and sequence it according to the weighted off-target distance. Finally the effectiveness and practicality of the model is proved by a real project.展开更多
Due to the randomness and time dependence of the factors affecting software reliability, most software reliability models are treated as stochastic processes, and the non-homogeneous Poisson process(NHPP) is the most ...Due to the randomness and time dependence of the factors affecting software reliability, most software reliability models are treated as stochastic processes, and the non-homogeneous Poisson process(NHPP) is the most used one.However, the failure behavior of software does not follow the NHPP in a statistically rigorous manner, and the pure random method might be not enough to describe the software failure behavior. To solve these problems, this paper proposes a new integrated approach that combines stochastic process and grey system theory to describe the failure behavior of software. A grey NHPP software reliability model is put forward in a discrete form, and a grey-based approach for estimating software reliability under the NHPP is proposed as a nonlinear multi-objective programming problem. Finally, four grey NHPP software reliability models are applied to four real datasets, the dynamic R-square and predictive relative error are calculated. Comparing with the original single NHPP software reliability model, it is found that the modeling using the integrated approach has a higher prediction accuracy of software reliability. Therefore, there is the characteristics of grey uncertain information in the NHPP software reliability models, and exploiting the latent grey uncertain information might lead to more accurate software reliability estimation.展开更多
基金the National Natural Science Foundation of China (6070308360575033).
文摘In a measurement system, new representation methods are necessary to maintain the uncertainty and to supply more powerful ability for reasoning and transformation between numerical system and symbolic system. A grey measurement system is discussed from the point of view of intelligent sensors and incomplete information processing compared with a numerical and symbolized measurement system. The methods of grey representation and information processing are proposed for data collection and reasoning. As a case study, multi-ultrasonic sensor systems are demonstrated to verify the effectiveness of the proposed methods.
文摘Grey sequence generation can draw out and develop implied rules of the original data. Different kinds of generation methods were summarized and classified into two types: partial generation and whole generation. The average generation and stepwise ratio generation is disussed , the preference generation is regard as a special case of proportional division based on analysis geometric theory, propose an idea of using concave and convex status of discrete data to determine the generation coefficient. Based on the stepwise and smooth ratio generation, a tendency average generation is proposed and have a comparison using the data provided in papers listed in the references. The comparison proves that the new generation is better than the other two generations and errors are obviously reduced.
文摘In the evaluation of some simulation systems, only small samples data are gotten due to the limited conditions. In allusion to the evaluation problem of small sample data, an interval estimation approach with the improved grey confidence degree is proposed.On the basis of the definition of grey distance, three kinds of definition of the grey weight for every sample element in grey estimated value are put forward, and then the improved grey confidence degree is designed. In accordance with the new concept, the grey interval estimation for small sample data is deduced. Furthermore,the bootstrap method is applied for more accurate grey confidence interval. Through resampling of the bootstrap, numerous small samples with the corresponding confidence intervals can be obtained. Then the final confidence interval is calculated from the union of these grey confidence intervals. In the end, the simulation system evaluation using the proposed method is conducted. The simulation results show that the reasonable confidence interval is acquired, which demonstrates the feasibility and effectiveness of the proposed method.
基金This project was supported by the National High-Tech Research and Development Plan (2001AA422140) National Science Foundation (69889501, 60105005).
文摘In this paper, a new method for mobile robot map building based on grey system theory is presented, by which interpretation and integration of sonar readings can be solved robustly and efficiently. The conception of 'grey number is introduced to model and handle the uncertainty of sonar reading. A new data fusion approach based on grey system theory is proposed to construct environment model. Map building experiments are performed both on a platform of simulation and a real mobile robot. Experimental results show that our method is robust and accurate.
基金Project(50774095) supported by the National Natural Science Foundation of ChinaProject(200449) supported by the National Outstanding Doctoral Dissertations Special Funds of China
文摘In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.
文摘To evaluate the effectiveness of weapon systems, the advantages and disadvantages of grey relational analysis and TOPSIS for multiattribute decision-making is pointed out, and an effectiveness evaluation model of weapon systems by combining grey relational analysis and TOPSIS is proposed. The model aggregates the grey relational grade and the distance to a new integrated closeness and reflects not only the trend but also the situation of the alternative. The example illuminates that the model is effective for the effectiveness evaluation of weapon systems.
基金supported by the National Natural Science Foundation of China(72271124,72071111)Shandong Natural Science Foundation(ZR2023MG070)the Social Science Planning Project of Shandong Province(23CGLJ03,21CTJJ01).
文摘Based on the variation of discrete surface,a new grey relational analysis model,called the grey variation relational ana-lysis(GVRA)model,is proposed in this paper.Meanwhile,the proposed model avoids the inconsistent results caused by diffe-rent construction of discrete surface of panel data or the change in the order of indicators or objects in existing grey relational analysis models.Firstly,the submatrix of the sample matrix is given according to the permutation and combination theory.Secondly,the amplitude of the submatrix is calculated and the variation of discrete surface is obtained.Then,a grey relational coefficient is presented by variation difference,and the GVRA model is established.Furthermore,the properties of the pro-posed model,such as normality,symmetry,reflexivity,transla-tion invariant,and number multiplication invariant,are also veri-fied.Finally,the proposed model is used to identify the driving factors of haze in the cities along the Yellow River in Shandong Province,China.The result reveals that the proposed model can effectively measure the relationship between panel data.
基金supported by the National Natural Science Foundation of China(51375389)
文摘A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.
基金supported by the National Natural Science Foundation of China(72271124,72071111).
文摘Aiming at the characteristics of multi-stage and(extremely)small samples of the identification problem of key effectiveness indexes of weapon equipment system-of-systems(WESoS),a Bayesian intelligent identification and inference model for system effectiveness assessment indexes based on dynamic grey incidence is proposed.The method uses multi-layer Bayesian techniques,makes full use of historical statistics and empirical information,and determines the Bayesian estima-tion of the incidence degree of indexes,which effectively solves the difficulties of small sample size of effectiveness indexes and difficulty in obtaining incidence rules between indexes.Sec-ondly,The method quantifies the incidence relationship between evaluation indexes and combat effectiveness based on Bayesian posterior grey incidence,and then identifies key system effec-tiveness evaluation indexes.Finally,the proposed method is applied to a case of screening key effectiveness indexes of a missile defensive system,and the analysis results show that the proposed method can fuse multi-moment information and extract multi-stage key indexes,and has good data extraction capability in the case of small samples.
文摘The concept of emissivity has been with the scientific and engineering world since Planck formulated his blackbody radiation law more than a century ago.Nevertheless,emissivity is an elusive concept even for ex⁃perts.It is a vague and fuzzy concept for the wider community of engineers.The importance of remote sensing of temperature by measuring IR radiation has been recognized in a wide range of industrial,medical,and environ⁃mental uses.One of the major sources of errors in IR radiometry is the emissivity of the surface being measured.In real experiments,emissivity may be influenced by many factors:surface texture,spectral properties,oxida⁃tion,and aging of surfaces.While commercial blackbodies are prevalent,the much-needed grey bodies with a known emissivity,are unavailable.This study describes how to achieve a calibrated and stable emissivity with a blackbody,a perforated screen,and a reliable and linear novel IR thermal sensor,18 dubbed TMOS.The Digital TMOS is now a low-cost commercial product,it requires low power,and it has a small form factor.The method⁃ology is based on two-color measurements,with two different optical filters,with selected wavelengths conform⁃ing to the grey body definition of the use case under study.With a photochemically etched perforated screen,the effective emissivity of the screen is simply the hole density area of the surface area that emits according to the blackbody temperature radiation.The concept is illustrated with ray tracing simulations,which demonstrate the approach.Measured results are reported.
基金Heilongjiang Provincial Natural Science Foundation of China (LH2021F009)。
文摘Anti-jamming performance evaluation has recently received significant attention. For Link-16, the anti-jamming performance evaluation and selection of the optimal anti-jamming technologies are urgent problems to be solved. A comprehensive evaluation method is proposed, which combines grey relational analysis (GRA) and cloud model, to evaluate the anti-jamming performances of Link-16. Firstly, on the basis of establishing the anti-jamming performance evaluation indicator system of Link-16, the linear combination of analytic hierarchy process(AHP) and entropy weight method (EWM) are used to calculate the combined weight. Secondly, the qualitative and quantitative concept transformation model, i.e., the cloud model, is introduced to evaluate the anti-jamming abilities of Link-16 under each jamming scheme. In addition, GRA calculates the correlation degree between evaluation indicators and the anti-jamming performance of Link-16, and assesses the best anti-jamming technology. Finally, simulation results prove that the proposed evaluation model can achieve the objective of feasible and practical evaluation, which opens up a novel way for the research of anti-jamming performance evaluations of Link-16.
基金supported partly by the National Natural Science Foundation of China (70701017) the Philosophy and Social Sciences Foundation of Nanjing University of Astronautics and Aeronautics (V0865-091).
文摘Grey relational analysis is an important part of the grey systems theory, and it is the basis of the grey clustering analysis, grey decision-making and grey controlling. To research whether grey relational models satisfy the four grey relational theorems, several kinds of grey relational models are commented. Some problems including the properties of normality, pair symmetry and wholeness are discussed. The phenomenon that the lower value of almost each grey relational model is not equal to zero is proved. The contradiction problems between the properties of wholeness and pair symmetry are verified. Finally, several propositions are constructed to explain the above problems.
基金supported by the National Natural Science Foundation of China(7084001290924022)the Ph.D.Thesis Innovation and Excellent Foundation of Nanjing University of Aeronautics and Astronautics(2010)
文摘In grey system theory,the studies in the field of grey prediction model are focused on real number sequences,rather than grey number ones.Hereby,a prediction model based on interval grey number sequences is proposed.By mining the geometric features of interval grey number sequences on a two-dimensional surface,all the interval grey numbers are converted into real numbers by means of certain algorithm,and then the prediction model is established based on those real number sequences.The entire process avoids the algebraic operations of grey number,and the prediction problem of interval grey number is usefully solved.Ultimately,through an example's program simulation,the validity and practicability of this novel model are verified.
基金supported by the National Natural Science Foundation of China(7090104171171113)the Aeronautical Science Foundation of China(2014ZG52077)
文摘This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.
基金supported by the National Natural Science Foundation of China(7117111370901041)
文摘This paper aims to study a novel expansion discrete grey forecasting model, which could aggregate input information more effectively. In general, existing multi-factor grey forecasting models, such as one order and h variables grey forecasting model (GM (1, h)), always aggregate the main system variable and independent variables in a linear form rather than a nonlinear form, while a nonlinear form could be used in more cases than the linear form. And the nonlinear form could aggregate collinear independent factors, which widely lie in many multi-factor forecasting problems. To overcome this problem, a new approach, named as the Solow residual method, is proposed to aggregate independent factors. And a new expansion model, feedback multi-factor discrete grey forecasting model based on the Solow residual method (abbreviated as FDGM (1, h)), is proposed accordingly. Then the feedback control equation and the parameters' solution of the FDGM (1, h) model are given. Finally, a real application is used to test the modelling accuracy of the FDGM (1, h) model. Results show that the FDGM (1, h) model is much better than the nonhomogeneous discrete grey forecasting model (NDGM) and the GM (1, h) model.
基金supported by the National Natural Science Foundation of China(71401052)the Key Project of National Social Science Fund of China(12AZD108)+2 种基金the Doctoral Fund of Ministry of Education(20120094120024)the Philosophy and Social Science Fund of Jiangsu Province Universities(2013SJD630073)the Central University Basic Service Project Fee of Hohai University(2011B09914)
文摘To overcome the too fine-grained granularity problem of multivariate grey incidence analysis and to explore the comprehensive incidence analysis model, three multivariate grey incidences degree models based on principal component analysis (PCA) are proposed. Firstly, the PCA method is introduced to extract the feature sequences of a behavioral matrix. Then, the grey incidence analysis between two behavioral matrices is transformed into the similarity and nearness measure between their feature sequences. Based on the classic grey incidence analysis theory, absolute and relative incidence degree models for feature sequences are constructed, and a comprehensive grey incidence model is proposed. Furthermore, the properties of models are researched. It proves that the proposed models satisfy the properties of translation invariance, multiple transformation invariance, and axioms of the grey incidence analysis, respectively. Finally, a case is studied. The results illustrate that the model is effective than other multivariate grey incidence analysis models.
基金supported by the National Natural Science Foundation of China(71401052)the Fundamental Research Funds for the Central Universities(2019B19514)。
文摘In order to solve the problem that existing multivariate grey incidence models cannot be applied to time series on different scales, a new model is proposed based on spatial pyramid pooling.Firstly, local features of multivariate time series on different scales are pooled and aggregated by spatial pyramid pooling to construct n levels feature pooling matrices on the same scale. Secondly,Deng's multivariate grey incidence model is introduced to measure the degree of incidence between feature pooling matrices at each level. Thirdly, grey incidence degrees at each level are integrated into a global incidence degree. Finally, the performance of the proposed model is verified on two data sets compared with a variety of algorithms. The results illustrate that the proposed model is more effective and efficient than other similarity measure algorithms.
基金supported by the National Natural Science Foundation for Young Scholar of China(70901040)the Doctoral Fund of Ministry of Education of China(200802870020)the Nanjing University of Aeronautics and Astronautics Innovation Foundation(Y0811-091).
文摘Based on the distance of interval numbers and the two-stage decision methods, this paper expands the decision model of grey target into some situation under which the decision information and target weights are the interval numbers at the same time. It also gives the optimization method of weights in the grey target. We get the optimum coordinated vector utilizing the combination assigning method, based on the local optimization of various schemes. So it can shift the weights of interval number into real number form and sequence it according to the weighted off-target distance. Finally the effectiveness and practicality of the model is proved by a real project.
基金supported by the National Natural Science Foundation of China (71671090)the Fundamental Research Funds for the Central Universities (NP2020022)the Qinglan Project of Excellent Youth or Middle-Aged Academic Leaders in Jiangsu Province。
文摘Due to the randomness and time dependence of the factors affecting software reliability, most software reliability models are treated as stochastic processes, and the non-homogeneous Poisson process(NHPP) is the most used one.However, the failure behavior of software does not follow the NHPP in a statistically rigorous manner, and the pure random method might be not enough to describe the software failure behavior. To solve these problems, this paper proposes a new integrated approach that combines stochastic process and grey system theory to describe the failure behavior of software. A grey NHPP software reliability model is put forward in a discrete form, and a grey-based approach for estimating software reliability under the NHPP is proposed as a nonlinear multi-objective programming problem. Finally, four grey NHPP software reliability models are applied to four real datasets, the dynamic R-square and predictive relative error are calculated. Comparing with the original single NHPP software reliability model, it is found that the modeling using the integrated approach has a higher prediction accuracy of software reliability. Therefore, there is the characteristics of grey uncertain information in the NHPP software reliability models, and exploiting the latent grey uncertain information might lead to more accurate software reliability estimation.