An increase in RE element content in Mg alloys promotes the grain boundary precipitate,which affects the mechanical properties.However,the influence of grain boundary precipitates on microstructure of Mg-RE alloys dur...An increase in RE element content in Mg alloys promotes the grain boundary precipitate,which affects the mechanical properties.However,the influence of grain boundary precipitates on microstructure of Mg-RE alloys during ageing and their role on ductility of the aged alloy is unclear.In this work,hot extrusion and ageing treatment were performed for Mg-9Gd-2Y-xNd-0.2Zr(x=1 wt.%and 3 wt.%)alloys,and grain boundary precipitates were formed in the extruded Mg-9Gd-2Y-3Nd-0.2Zr alloy due to the increase of Nd content.The extruded alloys exhibit a complete dynamic recrystallization(DRX)microstructure and a texture with the<0001>orientation parallel to the extrusion direction(ED).In addition,a large amount of fiber microstructures distributed by the second phase along the ED were formed in the Mg-9Gd-2Y-3Nd-0.2Zr alloy,while only a small amount of the second phase was observed in the Mg-9Gd-2Y-1Nd-0.2Zr alloy.After ageing treatment,a large amount ofβ'phase precipitated inside the grains.The strength of the Mg-9Gd-2Y-1Nd-0.2Zr alloy increased from 202 MPa to 275 MPa but the elongation decreased from 12.8%to 2.6%,and the strength of the Mg-9Gd-2Y-3Nd-0.2Zr alloy increased from 212 MPa to 281 MPa but the elongation decreased from 13.7%to 6.2%.Among them,the Mg-9Gd-2Y-3Nd-0.2Zr alloy showed good overall mechanical properties,especially the elongation of the aged alloy was 58%higher than that of the Mg-9Gd-2Y-1Nd-0.2Zr alloy.The increase in ductility of the aged Mg-9Gd-2Y-3Nd-0.2Zr alloy attributed to the grain boundary precipitate promotes the formation of a large number of precipitation free zones(PFZs)with widths of 130-150 nm during ageing treatment.展开更多
A novel grain boundary(GB) model characterized with different angles and positions in the nanowire was set up.By means of device simulator,the effects of grain boundary angle and location on the electrical performance...A novel grain boundary(GB) model characterized with different angles and positions in the nanowire was set up.By means of device simulator,the effects of grain boundary angle and location on the electrical performance of ZnO nanowire FET(Nanowire Field-Effect Transistor) with a wrap-around gate configuration,were explored.With the increase of the grain boundary angle,the electrical performance degrades gradually.When a grain boundary with a smaller angle,such as 5° GB,is located close to the source or drain electrode,the grain boundary is partially depleted by an electric field peak,which leads to the decrease of electron concentration and the degradation of transistor characteristics.When the 90° GB is located at the center of the nanowire,the action of the electric field is balanced out,so the electrical performance of transistor is better than that of the 90° GB located at the other positions.展开更多
The grain size, textures and grain boundary plane distributions in a cold-rolled and annealed ferritic stainless steel were investigated by means of EBSD techniques. The results show that, following cold rolling with ...The grain size, textures and grain boundary plane distributions in a cold-rolled and annealed ferritic stainless steel were investigated by means of EBSD techniques. The results show that, following cold rolling with the thickness reduction of 85%, relatively low temperature (780℃) annealing brings an extremely sluggish grain growth and no grain texture develops when the annealing time varies from 5 min to 480 min. The free energy reduction of the system is mainly caused by the grain boundary plane re-orientation in addition to minor grain growth because the distributions of grain boundary planes are moderately preferred on { 100} according to the five parameter analyses (FPA) concerning the grain boundary plane characteristics. However, in the case of high-temperature (1 000 ℃) annealing, the average grain size does not increase until annealing time is prolonged to 90 min, after which extensive grain growth occurs and strong {100}(hkl) texture emerges whereas nearly random grain boundary plane distributions are observed. The free energy reduction of the system is most likely attributed to the selective growth.展开更多
The constitutive relationships of Al-Mg-Si alloy deformed at various strain rates,temperatures and strains were studied.The microstructure evolution was quantitatively characterized and analyzed,including recrystalliz...The constitutive relationships of Al-Mg-Si alloy deformed at various strain rates,temperatures and strains were studied.The microstructure evolution was quantitatively characterized and analyzed,including recrystallization fraction,grain sizes,local misorientation,geometrically necessary dislocation and stored strain energy during hot deformation and subsequent heat treatment.The results show that the dislocation density and energy storage are linear with ln Z during hot deformation and subsequent heat treatment,indicating continuous recrystallization occurring in both processes.With higher ln Z,the dislocation density declines more sharply during subsequent heat treatment.When ln Z is less than 28,dislocation density becomes more stable with less reduction during subsequent heat treatment after hot deformation.As these dislocations distribute along low angle grain boundaries,the subgrain has good stability during subsequent heat treatment.The main recrystallization mechanism during hot deformation is continuous dynamic recrystallization,accompanied by geometric dynamic recrystallization at higher ln Z.展开更多
Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a c...Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities.However,the amount of equivalent heavyatom single dopant available is limited.Unfortunately,nonequivalent heavy dopants have finite solubility because of charge imbalance.Here,we propose a charge balance strategy for SnS by substituting Sn2+with Ag^(+)and heavy Bi^(3+),improving the doping limit of Ag from 2%to 3%.Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously,scattering the phonons at both the atomic scale and nanoscale.The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m^(−1)·K^(−1)at room temperature and 0.388 W·m^(−1)·K^(−1)at 275°C,which is below the amorphous limit of 0.450 W·m^(−1)·K^(−1)for SnS.This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification.展开更多
A unit cell including the matrix, precipitation free zone(PFZ) and grain boundary was prepared, and the crystal plasticity finite element method(CPFEM) and extended finite element method(XFEM) were used to simulate th...A unit cell including the matrix, precipitation free zone(PFZ) and grain boundary was prepared, and the crystal plasticity finite element method(CPFEM) and extended finite element method(XFEM) were used to simulate the propagation of cracks at grain boundary. Simulation results show that the crystallographic orientation of PFZ has significant influence on crack propagation, which includes the crack growth direction and crack growth velocity. The fracture strain of soft orientation is larger than that of hard orientation due to the role of reducing the stress intensity at grain boundary in intergranular brittle fracture. But in intergranular ductile fracture, the fracture strain of soft orientation may be smaller than that of hard orientation due to the roles of deformation localization.展开更多
The influence of quench transfer time on the microstructure and mechanical properties of 7055 aluminum alloy with and without zirconium was investigated by tensile properties test,optical microscopy,scanning electron ...The influence of quench transfer time on the microstructure and mechanical properties of 7055 aluminum alloy with and without zirconium was investigated by tensile properties test,optical microscopy,scanning electron microscopy and transmission electron microscopy.For the Zr-free alloy,the strength increases to the highest value at 20 s with transfer time,and then decreases slightly.The elongation decreases slowly with transfer time within 20 s,and more rapidly after 20 s.For the Zr-containing alloy,prolonging transfer time within 20 s results in slight decrease in the strength and elongation,and rapid drop of which is observed after 20 s.For the Zr-free alloy,prolonging transfer time can increase the percentage of intergranular fracture,which is mainly caused by wide grain boundary precipitate free zone.The failure mode of the Zr-containing alloy is modified from the predominant transgranular void growth and intergranular fracture to transgranular shear and intergranular fracture with increase in the transfer time,which is attributed to the wider grain boundary precipitate free zone and coarse equilibrium η phases in the matrix.展开更多
The influence of exfoliation corrosion on the tensile properties of a high strength Al-Zn-Mg-Cu alloy was investigated by ambient temperature tensile testing, optical microscopy, transmission electron microscopy (TEM...The influence of exfoliation corrosion on the tensile properties of a high strength Al-Zn-Mg-Cu alloy was investigated by ambient temperature tensile testing, optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). After exfoliation corrosion immersion, blisters and corrosion pits can be seen on the sheet surface, which lead to loss of materials and notches. A number of intergranular cracks are observed to initiate at the bottom of the corrosion-induced notches and propagate rapidly into the bulk materials during tensile. Consequently, exfoliation corrosion results in significant loss of strength and brittle fracture. EBSD results show that the crack propagation path is primarily along the grain boundaries with misorientation of-45°, and coincidence site lattice (CSL) boundaries are slightly more resistant to crack.展开更多
基金Project(2021YFB3701103) supported by the National Key R&D Program of China。
文摘An increase in RE element content in Mg alloys promotes the grain boundary precipitate,which affects the mechanical properties.However,the influence of grain boundary precipitates on microstructure of Mg-RE alloys during ageing and their role on ductility of the aged alloy is unclear.In this work,hot extrusion and ageing treatment were performed for Mg-9Gd-2Y-xNd-0.2Zr(x=1 wt.%and 3 wt.%)alloys,and grain boundary precipitates were formed in the extruded Mg-9Gd-2Y-3Nd-0.2Zr alloy due to the increase of Nd content.The extruded alloys exhibit a complete dynamic recrystallization(DRX)microstructure and a texture with the<0001>orientation parallel to the extrusion direction(ED).In addition,a large amount of fiber microstructures distributed by the second phase along the ED were formed in the Mg-9Gd-2Y-3Nd-0.2Zr alloy,while only a small amount of the second phase was observed in the Mg-9Gd-2Y-1Nd-0.2Zr alloy.After ageing treatment,a large amount ofβ'phase precipitated inside the grains.The strength of the Mg-9Gd-2Y-1Nd-0.2Zr alloy increased from 202 MPa to 275 MPa but the elongation decreased from 12.8%to 2.6%,and the strength of the Mg-9Gd-2Y-3Nd-0.2Zr alloy increased from 212 MPa to 281 MPa but the elongation decreased from 13.7%to 6.2%.Among them,the Mg-9Gd-2Y-3Nd-0.2Zr alloy showed good overall mechanical properties,especially the elongation of the aged alloy was 58%higher than that of the Mg-9Gd-2Y-1Nd-0.2Zr alloy.The increase in ductility of the aged Mg-9Gd-2Y-3Nd-0.2Zr alloy attributed to the grain boundary precipitate promotes the formation of a large number of precipitation free zones(PFZs)with widths of 130-150 nm during ageing treatment.
基金Project(60876022) supported by the National Natural Science Foundation of ChinaProject(50925727) supported by the National Natural Science Funds for Distinguished Young Scholars of China
文摘A novel grain boundary(GB) model characterized with different angles and positions in the nanowire was set up.By means of device simulator,the effects of grain boundary angle and location on the electrical performance of ZnO nanowire FET(Nanowire Field-Effect Transistor) with a wrap-around gate configuration,were explored.With the increase of the grain boundary angle,the electrical performance degrades gradually.When a grain boundary with a smaller angle,such as 5° GB,is located close to the source or drain electrode,the grain boundary is partially depleted by an electric field peak,which leads to the decrease of electron concentration and the degradation of transistor characteristics.When the 90° GB is located at the center of the nanowire,the action of the electric field is balanced out,so the electrical performance of transistor is better than that of the 90° GB located at the other positions.
基金Project(50974147)supported by the National Natural Science Foundation of ChinaProject(2009ZRB01176)supported by the Natural Science Foundation of Shandong Province,China
文摘The grain size, textures and grain boundary plane distributions in a cold-rolled and annealed ferritic stainless steel were investigated by means of EBSD techniques. The results show that, following cold rolling with the thickness reduction of 85%, relatively low temperature (780℃) annealing brings an extremely sluggish grain growth and no grain texture develops when the annealing time varies from 5 min to 480 min. The free energy reduction of the system is mainly caused by the grain boundary plane re-orientation in addition to minor grain growth because the distributions of grain boundary planes are moderately preferred on { 100} according to the five parameter analyses (FPA) concerning the grain boundary plane characteristics. However, in the case of high-temperature (1 000 ℃) annealing, the average grain size does not increase until annealing time is prolonged to 90 min, after which extensive grain growth occurs and strong {100}(hkl) texture emerges whereas nearly random grain boundary plane distributions are observed. The free energy reduction of the system is most likely attributed to the selective growth.
基金Project(2016YFB0300901)supported by the National Key R&D Program of ChinaProject(TC190H3ZV/2)supported by the National Building Project of Application Demonstration Platform on New Materials Products,ChinaProject(15308469779)supported by Key Laboratory of National Science and Technology for Equipment Pre-research,China。
文摘The constitutive relationships of Al-Mg-Si alloy deformed at various strain rates,temperatures and strains were studied.The microstructure evolution was quantitatively characterized and analyzed,including recrystallization fraction,grain sizes,local misorientation,geometrically necessary dislocation and stored strain energy during hot deformation and subsequent heat treatment.The results show that the dislocation density and energy storage are linear with ln Z during hot deformation and subsequent heat treatment,indicating continuous recrystallization occurring in both processes.With higher ln Z,the dislocation density declines more sharply during subsequent heat treatment.When ln Z is less than 28,dislocation density becomes more stable with less reduction during subsequent heat treatment after hot deformation.As these dislocations distribute along low angle grain boundaries,the subgrain has good stability during subsequent heat treatment.The main recrystallization mechanism during hot deformation is continuous dynamic recrystallization,accompanied by geometric dynamic recrystallization at higher ln Z.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-070)the National Natural Science Foundation of China(21925110,21890750,U2032161,12147105)+8 种基金the USTC Research Funds of the Double First-Class Initiative(YD2060002004)the National Key Research and Development Program of China(2022YFA1203600,2022YFA1203601,2022YFA1203602)the Natural Science Foundation of China-Anhui Joint Fund(U23A20121)the Outstanding Youth Foundation of Anhui Province(2208085J14)the Anhui Provincial Key Research and Development Project(202004a050200760)the Key R&D Program of Shandong Province(2021CXGC010302)the Users with Excellence Project of Hefei Science Center CAS(2021HSC-UE004)the Fellowship of the China Postdoctoral Science Foundation(2022M710141)the open foundation of the Key Laboratory of the Engineering Research Center of Building Energy Efficiency Control and Evaluation,Ministry of Education(AHJZNX-2023-04).
文摘Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities.However,the amount of equivalent heavyatom single dopant available is limited.Unfortunately,nonequivalent heavy dopants have finite solubility because of charge imbalance.Here,we propose a charge balance strategy for SnS by substituting Sn2+with Ag^(+)and heavy Bi^(3+),improving the doping limit of Ag from 2%to 3%.Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously,scattering the phonons at both the atomic scale and nanoscale.The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m^(−1)·K^(−1)at room temperature and 0.388 W·m^(−1)·K^(−1)at 275°C,which is below the amorphous limit of 0.450 W·m^(−1)·K^(−1)for SnS.This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification.
基金Projects(51475162,51405153)supported by the National Natural Science Foundation of ChinaProject(14JJ5015)supported by the Hunan Provincial Natural Science Foundation,China
文摘A unit cell including the matrix, precipitation free zone(PFZ) and grain boundary was prepared, and the crystal plasticity finite element method(CPFEM) and extended finite element method(XFEM) were used to simulate the propagation of cracks at grain boundary. Simulation results show that the crystallographic orientation of PFZ has significant influence on crack propagation, which includes the crack growth direction and crack growth velocity. The fracture strain of soft orientation is larger than that of hard orientation due to the role of reducing the stress intensity at grain boundary in intergranular brittle fracture. But in intergranular ductile fracture, the fracture strain of soft orientation may be smaller than that of hard orientation due to the roles of deformation localization.
基金Project(2005CB623706) supported by the Major State Basic Research Development Program of ChinaProject(50230310) supported by the National Natural Science Foundation of China
文摘The influence of quench transfer time on the microstructure and mechanical properties of 7055 aluminum alloy with and without zirconium was investigated by tensile properties test,optical microscopy,scanning electron microscopy and transmission electron microscopy.For the Zr-free alloy,the strength increases to the highest value at 20 s with transfer time,and then decreases slightly.The elongation decreases slowly with transfer time within 20 s,and more rapidly after 20 s.For the Zr-containing alloy,prolonging transfer time within 20 s results in slight decrease in the strength and elongation,and rapid drop of which is observed after 20 s.For the Zr-free alloy,prolonging transfer time can increase the percentage of intergranular fracture,which is mainly caused by wide grain boundary precipitate free zone.The failure mode of the Zr-containing alloy is modified from the predominant transgranular void growth and intergranular fracture to transgranular shear and intergranular fracture with increase in the transfer time,which is attributed to the wider grain boundary precipitate free zone and coarse equilibrium η phases in the matrix.
基金Project(E2013402056)supported by the Natural Science Foundation of Hebei Province,ChinaProject(QN2014002)supported by the Science and Technology Research Foundation of Hebei Education Department for Young Teachers in University,ChinaProject(51601053)supported by the National Natural Science Foundation of China
基金Project(2012CB619500) supported by the National Basic Research Program of ChinaProject(201012200238) supported from the Freedom Explore Program of Central South University, China
文摘The influence of exfoliation corrosion on the tensile properties of a high strength Al-Zn-Mg-Cu alloy was investigated by ambient temperature tensile testing, optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). After exfoliation corrosion immersion, blisters and corrosion pits can be seen on the sheet surface, which lead to loss of materials and notches. A number of intergranular cracks are observed to initiate at the bottom of the corrosion-induced notches and propagate rapidly into the bulk materials during tensile. Consequently, exfoliation corrosion results in significant loss of strength and brittle fracture. EBSD results show that the crack propagation path is primarily along the grain boundaries with misorientation of-45°, and coincidence site lattice (CSL) boundaries are slightly more resistant to crack.