期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Grain boundary precipitate induced PFZ formation to improve the ductility of extruded Mg-Gd-Y-Nd-Zr alloy after ageing
1
作者 GAO Ze-xi LIU Chu-ming +4 位作者 JIANG Shu-nong YANG Da-ling WAN Ying-chun GAO Yong-hao CHEN Zhi-yong 《Journal of Central South University》 2025年第3期693-705,共13页
An increase in RE element content in Mg alloys promotes the grain boundary precipitate,which affects the mechanical properties.However,the influence of grain boundary precipitates on microstructure of Mg-RE alloys dur... An increase in RE element content in Mg alloys promotes the grain boundary precipitate,which affects the mechanical properties.However,the influence of grain boundary precipitates on microstructure of Mg-RE alloys during ageing and their role on ductility of the aged alloy is unclear.In this work,hot extrusion and ageing treatment were performed for Mg-9Gd-2Y-xNd-0.2Zr(x=1 wt.%and 3 wt.%)alloys,and grain boundary precipitates were formed in the extruded Mg-9Gd-2Y-3Nd-0.2Zr alloy due to the increase of Nd content.The extruded alloys exhibit a complete dynamic recrystallization(DRX)microstructure and a texture with the<0001>orientation parallel to the extrusion direction(ED).In addition,a large amount of fiber microstructures distributed by the second phase along the ED were formed in the Mg-9Gd-2Y-3Nd-0.2Zr alloy,while only a small amount of the second phase was observed in the Mg-9Gd-2Y-1Nd-0.2Zr alloy.After ageing treatment,a large amount ofβ'phase precipitated inside the grains.The strength of the Mg-9Gd-2Y-1Nd-0.2Zr alloy increased from 202 MPa to 275 MPa but the elongation decreased from 12.8%to 2.6%,and the strength of the Mg-9Gd-2Y-3Nd-0.2Zr alloy increased from 212 MPa to 281 MPa but the elongation decreased from 13.7%to 6.2%.Among them,the Mg-9Gd-2Y-3Nd-0.2Zr alloy showed good overall mechanical properties,especially the elongation of the aged alloy was 58%higher than that of the Mg-9Gd-2Y-1Nd-0.2Zr alloy.The increase in ductility of the aged Mg-9Gd-2Y-3Nd-0.2Zr alloy attributed to the grain boundary precipitate promotes the formation of a large number of precipitation free zones(PFZs)with widths of 130-150 nm during ageing treatment. 展开更多
关键词 Mg alloy grain boundary precipitate precipitation free zone DUCTILITY
在线阅读 下载PDF
Effect of grain boundary on electric performance of ZnO nanowire transistor with wrap-around gate
2
作者 周郁明 何怡刚 《Journal of Central South University》 SCIE EI CAS 2011年第4期1009-1012,共4页
A novel grain boundary(GB) model characterized with different angles and positions in the nanowire was set up.By means of device simulator,the effects of grain boundary angle and location on the electrical performance... A novel grain boundary(GB) model characterized with different angles and positions in the nanowire was set up.By means of device simulator,the effects of grain boundary angle and location on the electrical performance of ZnO nanowire FET(Nanowire Field-Effect Transistor) with a wrap-around gate configuration,were explored.With the increase of the grain boundary angle,the electrical performance degrades gradually.When a grain boundary with a smaller angle,such as 5° GB,is located close to the source or drain electrode,the grain boundary is partially depleted by an electric field peak,which leads to the decrease of electron concentration and the degradation of transistor characteristics.When the 90° GB is located at the center of the nanowire,the action of the electric field is balanced out,so the electrical performance of transistor is better than that of the 90° GB located at the other positions. 展开更多
关键词 ZnO nanowire field-effect transistor grain boundary electrical performance
在线阅读 下载PDF
Evolutions of texture and grain boundary plane distributions in a ferritic stainless steel
3
作者 方晓英 王卫国 +2 位作者 郭红 秦聪祥 周邦新 《Journal of Central South University》 SCIE EI CAS 2012年第12期3363-3368,共6页
The grain size, textures and grain boundary plane distributions in a cold-rolled and annealed ferritic stainless steel were investigated by means of EBSD techniques. The results show that, following cold rolling with ... The grain size, textures and grain boundary plane distributions in a cold-rolled and annealed ferritic stainless steel were investigated by means of EBSD techniques. The results show that, following cold rolling with the thickness reduction of 85%, relatively low temperature (780℃) annealing brings an extremely sluggish grain growth and no grain texture develops when the annealing time varies from 5 min to 480 min. The free energy reduction of the system is mainly caused by the grain boundary plane re-orientation in addition to minor grain growth because the distributions of grain boundary planes are moderately preferred on { 100} according to the five parameter analyses (FPA) concerning the grain boundary plane characteristics. However, in the case of high-temperature (1 000 ℃) annealing, the average grain size does not increase until annealing time is prolonged to 90 min, after which extensive grain growth occurs and strong {100}(hkl) texture emerges whereas nearly random grain boundary plane distributions are observed. The free energy reduction of the system is most likely attributed to the selective growth. 展开更多
关键词 grain texture grain boundary plane EBSD ferritic stainless steel
在线阅读 下载PDF
Effect of isothermal compression and subsequent heat treatment on grain structures evolution of Al-Mg-Si alloy 被引量:8
4
作者 LI Ze-cheng DENG Yun-lai +2 位作者 YUAN Man-fa ZHANG Jin GUO Xiao-bin 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2670-2686,共17页
The constitutive relationships of Al-Mg-Si alloy deformed at various strain rates,temperatures and strains were studied.The microstructure evolution was quantitatively characterized and analyzed,including recrystalliz... The constitutive relationships of Al-Mg-Si alloy deformed at various strain rates,temperatures and strains were studied.The microstructure evolution was quantitatively characterized and analyzed,including recrystallization fraction,grain sizes,local misorientation,geometrically necessary dislocation and stored strain energy during hot deformation and subsequent heat treatment.The results show that the dislocation density and energy storage are linear with ln Z during hot deformation and subsequent heat treatment,indicating continuous recrystallization occurring in both processes.With higher ln Z,the dislocation density declines more sharply during subsequent heat treatment.When ln Z is less than 28,dislocation density becomes more stable with less reduction during subsequent heat treatment after hot deformation.As these dislocations distribute along low angle grain boundaries,the subgrain has good stability during subsequent heat treatment.The main recrystallization mechanism during hot deformation is continuous dynamic recrystallization,accompanied by geometric dynamic recrystallization at higher ln Z. 展开更多
关键词 Al-Mg-Si alloy Zener-Hollomon parameter DISLOCATION RECRYSTALLIZATION grain boundaries
在线阅读 下载PDF
Charge-balanced codoping enables exceeding doping limit and ultralow thermal conductivity
5
作者 Long Chen Chun Wang +3 位作者 Lin Wang Minghao Wang Yongchun Zhu Changzheng Wu 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期1-7,I0009,共8页
Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a c... Materials with low thermal conductivity are applied extensively in energy management,and breaking the amorphous limits of thermal conductivity to solids has attracted widespread attention from scientists.Doping is a common strategy for achieving low thermal conductivity that can offer abundant scattering centers in which heavier dopants always result in lower phonon group velocities and lower thermal conductivities.However,the amount of equivalent heavyatom single dopant available is limited.Unfortunately,nonequivalent heavy dopants have finite solubility because of charge imbalance.Here,we propose a charge balance strategy for SnS by substituting Sn2+with Ag^(+)and heavy Bi^(3+),improving the doping limit of Ag from 2%to 3%.Ag and Bi codoping increases the point defect concentration and introduces abundant boundaries simultaneously,scattering the phonons at both the atomic scale and nanoscale.The thermal conductivity of Ag0.03Bi0.03Sn0.94S decreased to 0.535 W·m^(−1)·K^(−1)at room temperature and 0.388 W·m^(−1)·K^(−1)at 275°C,which is below the amorphous limit of 0.450 W·m^(−1)·K^(−1)for SnS.This strategy offers a simple way to enhance the doping limit and achieve ultralow thermal conductivity in solids below the amorphous limit without precise structural modification. 展开更多
关键词 charge-balanced codoping heavy atom point defect grain boundary ultralow thermal conductivity
在线阅读 下载PDF
Simulation of PFZ on intergranular fracture based on XFEM and CPFEM 被引量:4
6
作者 刘文辉 邱群 +1 位作者 陈宇强 唐昌平 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2500-2505,共6页
A unit cell including the matrix, precipitation free zone(PFZ) and grain boundary was prepared, and the crystal plasticity finite element method(CPFEM) and extended finite element method(XFEM) were used to simulate th... A unit cell including the matrix, precipitation free zone(PFZ) and grain boundary was prepared, and the crystal plasticity finite element method(CPFEM) and extended finite element method(XFEM) were used to simulate the propagation of cracks at grain boundary. Simulation results show that the crystallographic orientation of PFZ has significant influence on crack propagation, which includes the crack growth direction and crack growth velocity. The fracture strain of soft orientation is larger than that of hard orientation due to the role of reducing the stress intensity at grain boundary in intergranular brittle fracture. But in intergranular ductile fracture, the fracture strain of soft orientation may be smaller than that of hard orientation due to the roles of deformation localization. 展开更多
关键词 precipitation free zone(PFZ) intergranular fracture grain boundary extended finite element method(XFEM) crystal plasticity
在线阅读 下载PDF
Influence of quench transfer time on microstructure and mechanical properties of 7055 aluminum alloy 被引量:5
7
作者 游江海 刘胜胆 +1 位作者 张新明 张小艳 《Journal of Central South University of Technology》 EI 2008年第2期153-158,共6页
The influence of quench transfer time on the microstructure and mechanical properties of 7055 aluminum alloy with and without zirconium was investigated by tensile properties test,optical microscopy,scanning electron ... The influence of quench transfer time on the microstructure and mechanical properties of 7055 aluminum alloy with and without zirconium was investigated by tensile properties test,optical microscopy,scanning electron microscopy and transmission electron microscopy.For the Zr-free alloy,the strength increases to the highest value at 20 s with transfer time,and then decreases slightly.The elongation decreases slowly with transfer time within 20 s,and more rapidly after 20 s.For the Zr-containing alloy,prolonging transfer time within 20 s results in slight decrease in the strength and elongation,and rapid drop of which is observed after 20 s.For the Zr-free alloy,prolonging transfer time can increase the percentage of intergranular fracture,which is mainly caused by wide grain boundary precipitate free zone.The failure mode of the Zr-containing alloy is modified from the predominant transgranular void growth and intergranular fracture to transgranular shear and intergranular fracture with increase in the transfer time,which is attributed to the wider grain boundary precipitate free zone and coarse equilibrium η phases in the matrix. 展开更多
关键词 7055 aluminum alloy transfer time mechanical properties grain boundary precipitate free zone intergranular fracture
在线阅读 下载PDF
Effects of pre-deformation on microstructure and properties of Al–Cu–Mg–Ag heat-resistant alloy 被引量:4
8
作者 LIU Xiao-yan WANG Zhao-peng +3 位作者 LI Qing-shuai ZHANG Xi-liang CUI Hao-xuan ZHANG Xiao-liang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1027-1033,共7页
The effects of the pre-deformation on the microstructure, mechanical properties and corrosion resistance of Al–Cu–Mg–Ag alloys were investigated by means of hardness tests, tensile tests, intergranullar corrosion (... The effects of the pre-deformation on the microstructure, mechanical properties and corrosion resistance of Al–Cu–Mg–Ag alloys were investigated by means of hardness tests, tensile tests, intergranullar corrosion (IGC) tests and transmission electron microscopy (TEM), respectively. The results show that with the increase of deformation amount, the aging hardening rate increases while the strength of the alloy decreases and then increases. The sample with a pre-deformation of 6% possesses the highest tensile strength due to the refinedly and homogeneously distributed precipitations. The pre-deformation aging accelerates the heterogeneous nucleation of Ω and θ′ phases at dislocations, and also refines the precipitations both in the grains and along the grain boundaries. The precipitation of Ω phase is restrained while that of θ′ phase is accelerated in pre-deformed Al–Cu–Mg–Ag alloy compared with the sample without pre-deformation. In addition, the width of the precipitate free zone decreases with increasing the pre-deformation amount, leading to a narrower IGC passageway. This results in an enhanced IGC resistance of Al–Cu–Mg–Ag alloy treated by pre-deformation aging. © 2017, Central South University Press and Springer-Verlag GmbH Germany. 展开更多
关键词 Alloys Aluminum Corrosion Corrosion resistance Deformation Dislocations (crystals) grain boundaries High resolution transmission electron microscopy Microstructure NUCLEATION Precipitation (chemical) Silver Tensile strength Tensile testing Transmission electron microscopy
在线阅读 下载PDF
Influence of exfoliation corrosion on tensile properties of a high strength Al-Zn-Mg-Cu alloy 被引量:3
9
作者 刘胜胆 廖文博 +2 位作者 唐建国 张新明 刘心宇 《Journal of Central South University》 SCIE EI CAS 2013年第1期1-6,共6页
The influence of exfoliation corrosion on the tensile properties of a high strength Al-Zn-Mg-Cu alloy was investigated by ambient temperature tensile testing, optical microscopy, transmission electron microscopy (TEM... The influence of exfoliation corrosion on the tensile properties of a high strength Al-Zn-Mg-Cu alloy was investigated by ambient temperature tensile testing, optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). After exfoliation corrosion immersion, blisters and corrosion pits can be seen on the sheet surface, which lead to loss of materials and notches. A number of intergranular cracks are observed to initiate at the bottom of the corrosion-induced notches and propagate rapidly into the bulk materials during tensile. Consequently, exfoliation corrosion results in significant loss of strength and brittle fracture. EBSD results show that the crack propagation path is primarily along the grain boundaries with misorientation of-45°, and coincidence site lattice (CSL) boundaries are slightly more resistant to crack. 展开更多
关键词 EXFOLIATION tensile properties FRACTURE grain boundaries Al-Zn-Mg-Cu alloy
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部