期刊文献+
共找到264篇文章
< 1 2 14 >
每页显示 20 50 100
Research on three-dimensional attack area based on improved backtracking and ALPS-GP algorithms of air-to-air missile
1
作者 ZHANG Haodi WANG Yuhui HE Jiale 《Journal of Systems Engineering and Electronics》 2025年第1期292-310,共19页
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t... In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios. 展开更多
关键词 air combat three-dimensional attack area improved backtracking algorithm age-layered population structure genetic programming(ALPS-GP) gradient descent algorithm
在线阅读 下载PDF
激光相干合成系统中SPGD算法的分阶段自适应优化
2
作者 郑文慧 祁家琴 +6 位作者 江文隽 谭贵元 胡奇琪 高怀恩 豆嘉真 邸江磊 秦玉文 《红外与激光工程》 EI CSCD 北大核心 2024年第9期303-315,共13页
为改善传统随机并行梯度下降(Stochastic Parallel Gradient Descent,SPGD)算法应用于大规模激光相干合成系统时收敛速度慢且易陷入局部最优解的情况,提出了一种分阶段自适应增益SPGD算法-Staged SPGD算法。该算法根据性能评价函数值,... 为改善传统随机并行梯度下降(Stochastic Parallel Gradient Descent,SPGD)算法应用于大规模激光相干合成系统时收敛速度慢且易陷入局部最优解的情况,提出了一种分阶段自适应增益SPGD算法-Staged SPGD算法。该算法根据性能评价函数值,在不同收敛时期采用不同策略对增益系数进行自适应调整,同时引入含梯度更新因子的控制电压更新策略,在加快收敛速度的同时减少算法陷入局部极值的概率。实验结果表明:在19路激光相干合成系统中,与传统SPGD算法相比,Staged SPGD算法的收敛速度提升了36.84%,针对不同频率和幅度的相位噪声,算法也具有较优的收敛效果,且稳定性得到显著提升。此外,将Staged SPGD算法直接应用于37、61、91路相干合成系统时,Staged SPGD算法相比传统SPGD算法收敛速度分别提升了37.88%、40.85%和41.10%,提升效果随相干合成单元数增加而更加显著,表明该算法在收敛速度、稳定性和扩展性方面均具有一定优势,具备扩展到大规模相干合成系统的潜力。 展开更多
关键词 激光相干合成 相位控制 随机并行梯度下降算法 SPgd算法
在线阅读 下载PDF
基于神经网络的船舶辐射噪声预报方法 被引量:1
3
作者 黄欣 徐荣武 李瑞彪 《船舶力学》 北大核心 2025年第3期486-496,共11页
针对船舶机械设备众多、结构复杂、振动传递路径相互耦合的现状,本文提出基于误差反向传播(Back Propagation, BP)神经网络的船舶水下辐射噪声预报方法。分别构建基于梯度下降算法和贝叶斯正则化算法的BP神经网络,以振动数据为输入量、... 针对船舶机械设备众多、结构复杂、振动传递路径相互耦合的现状,本文提出基于误差反向传播(Back Propagation, BP)神经网络的船舶水下辐射噪声预报方法。分别构建基于梯度下降算法和贝叶斯正则化算法的BP神经网络,以振动数据为输入量、船体辐射噪声为输出量,将均方根误差(e RMSE)和平均绝对误差(e MAE)作为模型预测精度评价指标。结果表明,贝叶斯正则化BP神经网络的泛化性和鲁棒性优于梯度下降算法的BP神经网络,误差达到3 dB以内,在船舶辐射噪声预报领域具有较好的适用性。 展开更多
关键词 辐射噪声预报 BP神经网络 梯度下降算法 贝叶斯正则化算法
在线阅读 下载PDF
自适应光学系统SPGD控制算法的FPGA硬件实现 被引量:10
4
作者 张金宝 陈波 +1 位作者 王彩霞 李新阳 《光电工程》 CAS CSCD 北大核心 2009年第9期46-51,共6页
针对随机并行梯度下降(SPGD)算法实时性强,同时具有一定的灵活性的要求,本文提出了一种基于FPGA的SPGD算法硬件实现方法。该方法首先划分了各功能模块,然后对关键模块进行了实时化处理,并使用"流水线"和RAM技术设计了可升级... 针对随机并行梯度下降(SPGD)算法实时性强,同时具有一定的灵活性的要求,本文提出了一种基于FPGA的SPGD算法硬件实现方法。该方法首先划分了各功能模块,然后对关键模块进行了实时化处理,并使用"流水线"和RAM技术设计了可升级和扩展的变形镜控制模块。最后将该算法实现并应用到61单元自适应光学激光实验中,结果表明本文的设计可使用不同的性能指标实现变形镜的SPGD算法闭环控制,并能同时完成倾斜镜的控制,达到了实时性和灵活性的要求。 展开更多
关键词 自适应光学 SPgd算法 FPGA 变形镜
在线阅读 下载PDF
应用于光束均匀化整形的SAGAGD算法 被引量:4
5
作者 李永平 陈德伟 王炜 《强激光与粒子束》 EI CAS CSCD 北大核心 2002年第1期60-64,共5页
分析了模拟退火算法、基因算法、梯度下降法的主要步骤和应用中的优劣 ,将这三种方法加以综合运用于纯位相元件的优化设计以实现光束均匀化 ,结果表明 。
关键词 纯位相元件 模拟退火算法 基因算法 梯度下降法 光束均匀化 激光驱动系统 SAGAgd算法 惯性约束核聚变
在线阅读 下载PDF
基于S-BGD和梯度累积策略的改进深度学习方法及其在光伏出力预测中的应用 被引量:26
6
作者 黎静华 黄乾 +1 位作者 韦善阳 黄玉金 《电网技术》 EI CSCD 北大核心 2017年第10期3292-3299,共8页
为提高光伏出力的预测精度,提出了一种改进深度学习算法的光伏出力预测方法。首先,针对传统的深度学习算法采用批量梯度下降(batch gradient descent,BGD)法训练模型参数速度慢的问题,利用随机梯度下降(stochastic gradient descent,SGD... 为提高光伏出力的预测精度,提出了一种改进深度学习算法的光伏出力预测方法。首先,针对传统的深度学习算法采用批量梯度下降(batch gradient descent,BGD)法训练模型参数速度慢的问题,利用随机梯度下降(stochastic gradient descent,SGD)法训练快的优点,提出了一种改进的随机-批量梯度下降(stochastic-batch gradient descent,S-BGD)搜索方法,该方法兼具SGD和BGD的优点,提高了参数训练的速度。然后,针对参数训练过程中容易陷入局部最优点和鞍点的问题,借鉴运动学理论,提出了一种基于梯度累积(gradient pile,GP)的训练方法。该方法以累积梯度作为参数的修正量,可以有效地避免训练陷入局部点和鞍点,进而提高预测精度。最后,以澳大利亚艾丽斯斯普林光伏电站的数据为样本,将所提方法应用于光伏出力预测中,验证所提方法的有效性。 展开更多
关键词 光伏出力预测 深度学习算法 梯度下降法 梯度累积量 参数训练 神经网络 随机-批量梯度下降
在线阅读 下载PDF
空间光波前畸变校正中的元启发式SPGD算法 被引量:3
7
作者 赵辉 吕典楷 +3 位作者 安静 邝凯达 余孟洁 张天骐 《红外与激光工程》 EI CSCD 北大核心 2022年第7期424-434,共11页
为了改善传统随机并行梯度下降(Stochastic Parallel Gradient Descent,SPGD)算法收敛速度慢且容易陷入局部极值的问题,提出了一种元启发式随机并行梯度下降(Meta-Heuristic SPGD,MHSPGD)算法。该算法将SPGD算法和元启发式算法的开发与... 为了改善传统随机并行梯度下降(Stochastic Parallel Gradient Descent,SPGD)算法收敛速度慢且容易陷入局部极值的问题,提出了一种元启发式随机并行梯度下降(Meta-Heuristic SPGD,MHSPGD)算法。该算法将SPGD算法和元启发式算法的开发与探索两步结合,首先利用SPGD算法的梯度下降搜索得到局部最优解,然后进行邻域搜索得到局部最优区域以外的可能最优解,通过所有解性能指标的比较来确定新的迭代起点。随着搜索范围的自适应扩展,该算法能够避免陷入局部极值并趋向收敛于全局最优。同时,为了避免重复搜索,建立了记忆表来记录迭代过程中产生的次最优解。搭建了无波前探测器自适应光学系统模型,运用所提算法对不同湍流强度下的波前畸变进行了仿真校正,并针对不同Zernike阶数的像差进行了仿真实验。在三种湍流强度下,MHSPGD算法所能达到的斯特列尔比(Strehl Ratio,SR)分别为0.7621、0.6554、0.3749,相比于SPGD算法分别提升了0.1%、2%和18.6%。此外,当畸变中含有较多高阶成分时,文中所提优化算法相比传统的SPGD算法,SR收敛到0.6所需的迭代次数减少了约47%,且SR收敛极限值也提升了约9.4%。结果表明:与三种主流优化算法相比,MHSPGD在保持较快收敛速度的同时,能够在各种湍流强度下达到更高的收敛极限,有效地解决了算法的局部收敛问题。 展开更多
关键词 自适应光学 波前畸变校正 随机并行梯度下降算法 元启发式算法
在线阅读 下载PDF
空间光波前畸变校正中SPGD方法的自适应优化 被引量:2
8
作者 赵辉 邝凯达 +3 位作者 吕典楷 余孟洁 安静 张天骐 《红外与激光工程》 EI CSCD 北大核心 2022年第8期399-406,共8页
为了提高传统随机并行梯度下降(Stochastic Parallel Gradient Descent,SPGD)算法校正波前畸变的性能,提出了一种基于AdaBelief优化器的新型SPGD优化算法。该算法将深度学习中AdaBelief优化器的一阶动量和二阶动量集成到SPGD算法中以提... 为了提高传统随机并行梯度下降(Stochastic Parallel Gradient Descent,SPGD)算法校正波前畸变的性能,提出了一种基于AdaBelief优化器的新型SPGD优化算法。该算法将深度学习中AdaBelief优化器的一阶动量和二阶动量集成到SPGD算法中以提高算法的收敛速度,并使得算法能够自适应地调整增益系数。此外,对实际增益系数进行自适应动态裁剪以避免因实际增益系数出现极端值而造成的震荡。仿真结果表明:在37单元变形镜(Deformable Mirror,DM)下,新型SPGD优化算法能够对不同湍流强度下的波前畸变实现有效校正,不同波前畸变经过校正后的斯特列尔比(Strehl ratio,SR)分别提升至0.83、0.47和0.31。此外,该算法在不同湍流强度下的SR仅仅需要149、229和230次迭代达到阈值,与传统SPGD算法及其他优化算法相比有更快的收敛速度,且在稳定性和参数调节方面也具有一定的优越性。 展开更多
关键词 自适应光学 大气湍流 波前畸变 随机并行梯度下降算法
在线阅读 下载PDF
考虑岩层倾角-围压组合效应的岩石强度行为初探
9
作者 罗斌玉 苏辕 +4 位作者 刘晓云 黄腾达 肖枫亦 刘兰心 李鹏程 《岩土力学》 北大核心 2025年第3期775-788,共14页
研究岩石强度行为的岩层倾角-围压组合效应是揭示充填体约束缓倾斜矿柱强度行为的基础。采用数值模拟代替围压下的岩石倾斜加载试验,研究倾角-围压下岩石剪切破坏规律和强度特征。以红砂岩为研究对象,开展红砂岩单轴和剪切试验,获得红... 研究岩石强度行为的岩层倾角-围压组合效应是揭示充填体约束缓倾斜矿柱强度行为的基础。采用数值模拟代替围压下的岩石倾斜加载试验,研究倾角-围压下岩石剪切破坏规律和强度特征。以红砂岩为研究对象,开展红砂岩单轴和剪切试验,获得红砂岩的基本力学参数。以校核过的红砂岩基本力学参数为基础,开展7种倾角6种围压组合的岩石倾斜加载数值模拟,获取倾角-围压下岩石剪切破坏规律和强度特征。结果显示,随着倾角的增大,剪切带与水平面的倾角越大,且围压越大,剪切带变厚;增大围压能有效降低倾角对岩石强度的影响。然后利用非常规应力圆表征极限状态下岩石应力状态的围压-倾角效应,随着倾角的增大非常规应力圆圆心偏离正应力轴的程度越大,揭示了应力路径的变化规律。基于Mohr-Coulomb强度理论,采用梯度下降算法,将7种倾角6个围压下应力圆上表示极限应力状态的“点”联系起来,求得7种倾角对应的7组强度包络线方程。采用多项式逼近方法,引入倾角维度,将7组“强度包络线”向“强度曲面”拓展,实现从“点”到“线”扩展到“面”的转变,构建包含倾角因素的岩石强度模型。研究结果对揭示矿柱等岩体工程强度的倾角-围压耦合效应具有重要科学意义。 展开更多
关键词 强度行为 倾角效应 围压效应 MOHR-COULOMB准则 梯度下降算法
在线阅读 下载PDF
具有多型避障方式的智能车辆路径规划
10
作者 胡子牛 陈鑫鹏 +3 位作者 杨泽宇 余子云 秦洪懋 高铭 《汽车工程》 北大核心 2025年第3期402-411,共10页
非结构化场景往往存在多种尺寸各异的障碍物,路径规划过程只考虑绕行的避障方式会导致车辆通行效率降低。针对该问题,本文在传统混合A^(*)算法中融合分层碰撞检测策略,提出了一种具有多型避障方式的智能车辆路径规划方法。首先,以车辆... 非结构化场景往往存在多种尺寸各异的障碍物,路径规划过程只考虑绕行的避障方式会导致车辆通行效率降低。针对该问题,本文在传统混合A^(*)算法中融合分层碰撞检测策略,提出了一种具有多型避障方式的智能车辆路径规划方法。首先,以车辆底盘高度为基准构造上下双层栅格地图,并利用车身轮廓和四轮轮廓设计分层碰撞检测策略;然后,通过合理设计的启发函数与代价函数计算方式,使得混合A^(*)算法能够在多障碍物场景中高效搜索路径;最后,利用梯度下降法对路径进行平滑优化。仿真与实车试验结果表明,所提出算法可有效提高路径搜索效率并改善路径平滑性,且规划路径兼顾了跨障与绕障方式,使得车辆在多障碍物场景下具备更良好的通过性。 展开更多
关键词 路径规划 混合A*算法 分层碰撞检测策略 梯度下降法
在线阅读 下载PDF
直流微电网中双有源桥变换器的混合优化控制策略
11
作者 刘述喜 唐博 +2 位作者 陈鹤铭 黄思源 崔博凡 《电气工程学报》 北大核心 2025年第1期160-169,共10页
针对直流微电网系统中双有源桥(Dual active bridge,DAB)变换器存在的直流母线电压和负载波动大、传输功率不稳定等问题,提出一种基于遗传算法的自抗扰控制与梯度下降算法优化回流功率的混合优化控制策略。首先,分析拓展移相调制下DAB... 针对直流微电网系统中双有源桥(Dual active bridge,DAB)变换器存在的直流母线电压和负载波动大、传输功率不稳定等问题,提出一种基于遗传算法的自抗扰控制与梯度下降算法优化回流功率的混合优化控制策略。首先,分析拓展移相调制下DAB变换器的拓扑结构和功率特性,以回流功率为损失函数,引入梯度下降算法迭代寻找最优内移相比。随后,在DAB变换器小信号建模的基础上,设计线性自抗扰控制器,通过扩张状态观测器对输出电压和系统内外部扰动进行观测估计。同时,考虑到复杂环境下自抗扰控制器参数整定的不确定性,引入遗传算法对自抗扰控制器进行参数自整定。最后,搭建以TMS320F28335为控制器的试验平台对提出的混合优化控制策略(Hybrid optimal control strategy under extended phase shift modulation,EPS-HOCS)和传统PI控制(PI control strategy under extended phase shift modulation,EPS-PI)和自适应梯度下降算法控制(Adaptive gradient descent algorithm under extended phase shift modulation,EPS-AGDA)进行分析对比,验证了所提策略在回流功率和动态性能方面的优越性。 展开更多
关键词 双有源桥变换器 自抗扰控制 遗传算法 回流功率 梯度下降算法
在线阅读 下载PDF
LLM-105的ReaxFF参数优化与分子动力学模拟
12
作者 宋亮 张泳 +5 位作者 叶婧 陈博聪 侯方超 苏浩龙 蒋俊 周素芹 《火炸药学报》 北大核心 2025年第2期138-149,I0006,共13页
针对ReaxFF初始力场描述2,6-二氨基-3,5-二硝基-1-氧化物(LLM-105)的不足,采用了一种基于梯度下降算法JAX-ReaxFF框架策略,对ReaxFF反应力场进行了重新参数化,特别关注不同键和键角的势能面解离变化;在模拟不同温度和分解速率的反应过程... 针对ReaxFF初始力场描述2,6-二氨基-3,5-二硝基-1-氧化物(LLM-105)的不足,采用了一种基于梯度下降算法JAX-ReaxFF框架策略,对ReaxFF反应力场进行了重新参数化,特别关注不同键和键角的势能面解离变化;在模拟不同温度和分解速率的反应过程中,深入分析了LLM-105的反应机制。结果表明,当温度为1500 K时,分子反应主要聚焦于聚合和脱氢反应;随着温度的逐渐升高,LLM-105的反应模式呈现出了新的变化,当温度不小于2000 K时,除了原有的聚合和脱氢反应外,还观察到了C-NO_(2)键和C-NH_(2)键的断裂现象;值得注意的是,C-NO_(2)键的断裂成为触发这一系列反应的关键因素;随着分子中的C-NO_(2)和C-NH_(2)键开始发生均裂反应,促进了中间产物HON_(2)、NO_(2)和NH_(3)的形成,并经历一系列复杂的相互反应,最终生成了N_(2)、H_(2)O和CO_(2)等稳定产物,表明该力场能够有效模拟在不同温度和加热速率下的化学反应变化。 展开更多
关键词 量子化学 LLM-105 梯度下降算法 分解机制 分子动力学模拟 ReaxFF力场
在线阅读 下载PDF
一种用于数据流分类的递归反向传播算法
13
作者 刘展华 文益民 刘祥 《济南大学学报(自然科学版)》 北大核心 2025年第3期396-403,共8页
针对传统深度神经网络因数据流中发生概念漂移而出现分类准确率较低的问题,为了增强深度神经网络模型的学习能力,提出一种用于数据流分类的递归反向传播算法。该算法融合在线梯度下降算法的强大数据流学习能力与递归最小二乘法的快速收... 针对传统深度神经网络因数据流中发生概念漂移而出现分类准确率较低的问题,为了增强深度神经网络模型的学习能力,提出一种用于数据流分类的递归反向传播算法。该算法融合在线梯度下降算法的强大数据流学习能力与递归最小二乘法的快速收敛特性,当数据流发生概念漂移时,首先利用递归最小二乘法逐步训练神经网络模型,达到一个相对稳定的状态后切换至在线梯度下降算法,进一步训练深度神经网络模型,实现更深层次的数据流学习,优化深度神经网络模型的分类性能,并在多个人工数据集和真实数据集中实验验证所提算法的有效性。结果表明:所提算法具有优异的概念漂移适应能力,数据流分类准确率超越仅使用在线梯度下降算法或递归最小二乘法训练神经网络模型的多种算法。 展开更多
关键词 在线深度学习 在线梯度下降算法 递归最小二乘法 反向传播 深度神经网络 概念漂移
在线阅读 下载PDF
基于SPGD算法的非保偏-保偏光自适应偏振转换 被引量:5
14
作者 董苏惠 王小林 +3 位作者 粟荣涛 马鹏飞 周朴 杨丽佳 《强激光与粒子束》 EI CAS CSCD 北大核心 2015年第5期56-60,共5页
报道了一种基于随机并行梯度下降(SPGD)算法的高消光比非保偏~保偏光自适应偏振转换系统。该系统利用偏振控制器对非保偏光的偏振分量进行直接控制,通过SPGD算法对输出的偏振消光比进行优化,最终实现了自适应的非保偏一保偏光的偏... 报道了一种基于随机并行梯度下降(SPGD)算法的高消光比非保偏~保偏光自适应偏振转换系统。该系统利用偏振控制器对非保偏光的偏振分量进行直接控制,通过SPGD算法对输出的偏振消光比进行优化,最终实现了自适应的非保偏一保偏光的偏振转换。理论上,结合SPGD算法和偏振控制器的原理,对系统进行分析,建立了非保偏一保偏光自适应偏振转换的数学模型。实验上,利用该系统实现了非保偏到保偏光的转换,获得了14.1dB的线偏振光输出;并利用该系统将任意方向(O~360°)偏振态的线偏振光转换为期望偏振态的高消光比线偏光,其输出线偏光的平均消光比约为12dB。 展开更多
关键词 线偏光 偏振转换 偏振控制器 随机并行梯度下降算法
在线阅读 下载PDF
基于自适应SGD-多智能体的防空资源部署优化 被引量:6
15
作者 张杰 王刚 +2 位作者 宋亚飞 姜浩博 赵方正 《系统工程与电子技术》 EI CSCD 北大核心 2019年第7期1536-1543,共8页
针对分布式环境下的战场指挥资源部署存在的效率低、速度慢、无法达到预期战略、数据集过大导致计算资源损耗过大等问题,提出了一种分布式环境下多智能体联盟的指挥控制资源部署优化算法。通过对深度学习中的梯度下降算法进行学习率的改... 针对分布式环境下的战场指挥资源部署存在的效率低、速度慢、无法达到预期战略、数据集过大导致计算资源损耗过大等问题,提出了一种分布式环境下多智能体联盟的指挥控制资源部署优化算法。通过对深度学习中的梯度下降算法进行学习率的改进,将原本设定的学习率改为自适应的学习率,进而对指挥控制资源部署进行多智能体联盟的设计。仿真证明了该算法对此问题具有优越的适应性,可以高效地解决分布式环境下的多智能体联盟的指挥控制资源部署优化问题。 展开更多
关键词 深度学习 分布式多智能体 资源部署优化 梯度下降算法 智能体联盟
在线阅读 下载PDF
基于GDA的置信规则库参数训练的集成学习方法 被引量:2
16
作者 吴伟昆 傅仰耿 +2 位作者 苏群 吴英杰 巩晓婷 《计算机科学与探索》 CSCD 北大核心 2016年第12期1651-1661,共11页
目前对置信规则库(belief rule base,BRB)的研究主要针对单个BRB系统,然而单个BRB系统的推理性能不仅受参数取值的影响,而且当训练集分布不均衡或数据量较少时,容易导致参数训练不全面,从而使得推理结果所提供的决策信息存在局部性。通... 目前对置信规则库(belief rule base,BRB)的研究主要针对单个BRB系统,然而单个BRB系统的推理性能不仅受参数取值的影响,而且当训练集分布不均衡或数据量较少时,容易导致参数训练不全面,从而使得推理结果所提供的决策信息存在局部性。通过引入Bagging算法和Ada Boost算法,分别与BRB相结合提出了基于梯度下降法(gradient descent algorithm,GDA)的置信规则库系统的集成学习方法,并分别应用于输油管道检漏、多峰函数的置信规则库训练,将多个BRB子系统集成,提高系统的推理性能。在实验中,以收敛精度和曲线拟合效果作为衡量指标来分析集成系统的性能,并将集成系统与其他单个BRB系统进行比较,实验结果表明BRB集成学习方法合理有效。 展开更多
关键词 置信规则库(BRB) 集成学习 梯度下降法(gdA) BAGGING ADABOOST
在线阅读 下载PDF
基于SGD算法优化的BP神经网络围岩参数反演模型研究 被引量:8
17
作者 孙泽 宋战平 +1 位作者 岳波 杨子凡 《隧道建设(中英文)》 CSCD 北大核心 2023年第12期2066-2076,共11页
为充分利用现场监测数据所反馈的围岩变形信息,对岩体力学参数进行反演,以贵州省剑河至黎平高速公路TJ-1标段牛练塘隧道为工程背景,选择围岩弹性模量、黏聚力、泊松比及内摩擦角为影响因素,通过设计正交试验及有限元模拟,获取25组围岩... 为充分利用现场监测数据所反馈的围岩变形信息,对岩体力学参数进行反演,以贵州省剑河至黎平高速公路TJ-1标段牛练塘隧道为工程背景,选择围岩弹性模量、黏聚力、泊松比及内摩擦角为影响因素,通过设计正交试验及有限元模拟,获取25组围岩物理力学参数组合及其对应的拱顶沉降值和拱腰收敛模拟值。基于随机梯度下降算法(stochastic gradient descent algorithm,简称SGD算法)对传统BP神经网络模型进行改进,建立以拱顶沉降值和拱腰收敛值为输入参数,以围岩弹性模量、黏聚力、泊松比及内摩擦角为输出值的基于SGD算法优化的BP神经网络模型,实现围岩参数的反演分析。将反演所得的围岩参数代入有限元模型,验证优化BP神经网络模型的可行性和准确性。最后,分析围岩变形及初期支护受力特性并给出施工建议。结果表明:1)基于SGD算法优化的BP神经网络模型计算得出的拱顶沉降值、拱腰收敛值、拱肩收敛值与现场实测值的相对误差率在2.50%~24.01%,均低于传统BP神经网络模型计算得出的误差率(11.51%~93.71%),验证优化BP神经网络模型的可行性和优越性;2)上、下台阶拱脚处的喷层和锚杆有应力集中现象,有破坏风险,建议施工中加强拱脚支护,防止发生工程事故。 展开更多
关键词 隧道工程 围岩参数反演 随机梯度下降算法 神经网络 正交试验法 数值模拟
在线阅读 下载PDF
基于SGDM优化IWOA-CNN的配电网工程造价控制研究 被引量:15
18
作者 李康 鲍刚 +1 位作者 徐瑞 刘毅楷 《广西大学学报(自然科学版)》 CAS 北大核心 2023年第3期692-702,共11页
为了控制配电网工程项目的成本,需准确预测配电网工程造价,本文提出一种基于带动量因子的随机梯度下降(stochastic gradient descent with momentum factor, SGDM)优化的改进鲸鱼算法-卷积神经网络工程造价预测模型。首先,考虑回路数、... 为了控制配电网工程项目的成本,需准确预测配电网工程造价,本文提出一种基于带动量因子的随机梯度下降(stochastic gradient descent with momentum factor, SGDM)优化的改进鲸鱼算法-卷积神经网络工程造价预测模型。首先,考虑回路数、杆塔数、导线、地形、地质、风速、覆冰、导线截面、混凝土杆、塔材、绝缘子(直线)、绝缘子(耐张)、基坑开方、基础钢材、底盘和水泥对配电网工程造价的影响,建立了非线性函数关系;采用SGDM优化器改进的卷积神经网络对函数进行逼近,并用贝叶斯方法优化卷积神经网络的超参数;利用改进的鲸鱼算法(improved whale optimization algorithm, IWOA)优化卷积神经网络,找出卷积神经网络的最优学习率。数值算例表明,新模型预测效果较好,并提出相应的控制策略。 展开更多
关键词 配电网工程造价 鲸鱼算法 卷积神经网络 随机梯度下降优化器 贝叶斯优化 非线性收敛因子 自适应权重
在线阅读 下载PDF
基于ILSTM-AMSGD神经网络的时间序列预测方法 被引量:1
19
作者 杨爽 李文静 乔俊飞 《控制工程》 CSCD 北大核心 2023年第10期1793-1800,共8页
针对标准长短期记忆(long short-term memory,LSTM)神经网络的结构参数众多、训练过程耗时长问题,提出一种基于自适应动量随机梯度下降(adaptive momentum stochastic gradient descent,AMSGD)算法的改进型长短期记忆神经网络(ILSTM-AM... 针对标准长短期记忆(long short-term memory,LSTM)神经网络的结构参数众多、训练过程耗时长问题,提出一种基于自适应动量随机梯度下降(adaptive momentum stochastic gradient descent,AMSGD)算法的改进型长短期记忆神经网络(ILSTM-AMSGD神经网络),并将其用于时间序列预测中。首先,通过简化结构方程中的递归项权值,减少网络中所需训练的参数。其次,设计一种AMSGD算法对神经网络结构参数进行学习。最后,通过2个基准数据集和1个实际数据集对ILSTM-AMSGD神经网络模型在时间序列预测中的准确性和运行效率进行实验验证。结果表明,递归项权值简化方法可以提高模型的泛化能力,同时AMSGD算法加快了模型的收敛速度。与其他模型相比,ILSTM-AMSGD神经网络模型实现了对时间序列更加高效、准确的预测。 展开更多
关键词 时间序列预测 改进型长短期记忆神经网络 权重精简 梯度下降算法 自适应 动量
在线阅读 下载PDF
分布式训练系统及其优化算法综述 被引量:8
20
作者 王恩东 闫瑞栋 +1 位作者 郭振华 赵雅倩 《计算机学报》 EI CAS CSCD 北大核心 2024年第1期1-28,共28页
人工智能利用各种优化技术从海量训练样本中学习关键特征或知识以提高解的质量,这对训练方法提出了更高要求.然而,传统单机训练无法满足存储与计算性能等方面的需求.因此,利用多个计算节点协同的分布式训练系统成为热点研究方向之一.本... 人工智能利用各种优化技术从海量训练样本中学习关键特征或知识以提高解的质量,这对训练方法提出了更高要求.然而,传统单机训练无法满足存储与计算性能等方面的需求.因此,利用多个计算节点协同的分布式训练系统成为热点研究方向之一.本文首先阐述了单机训练面临的主要挑战.其次,分析了分布式训练系统亟需解决的三个关键问题.基于上述问题归纳了分布式训练系统的通用框架与四个核心组件.围绕各个组件涉及的技术,梳理了代表性研究成果.在此基础之上,总结了基于并行随机梯度下降算法的中心化与去中心化架构研究分支,并对各研究分支优化算法与应用进行综述.最后,提出了未来可能的研究方向. 展开更多
关键词 分布式训练系统 (去)中心化架构 中心化架构算法 (异)同步算法 并行随机梯度下降 收敛速率
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部