The goethite residue generated from zinc hydrometallurgy is classified as hazardous solid waste,produced in large quantities,and results in significant zinc loss.The study was conducted on removing iron from FeSO_(4)-...The goethite residue generated from zinc hydrometallurgy is classified as hazardous solid waste,produced in large quantities,and results in significant zinc loss.The study was conducted on removing iron from FeSO_(4)-ZnSO_(4) solution,employing seed-induced nucleation methods.Analysis of the iron removal rate,residue structure,morphology,and elemental composition involved ICP,XRD,FT-IR,and SEM.The existing state of zinc was investigated by combining step-by-step dissolution using hydrochloric acid.Concurrently,iron removal tests were extended to industrial solutions to assess the influence of seeds and solution pH on zinc loss and residue yield.The results revealed that seed addition increased the iron removal rate by 3%,elevated the residual iron content by 6.39%,and mitigated zinc loss by 29.55%in the simulated solution.Seed-induced nucleation prevented excessive nuclei formation,fostering crystal stable growth and high crystallinity.In addition,the zinc content of surface adsorption and crystal internal embedding in the residue was determined,and the zinc distribution on the surface was dense.In contrast,the total amount of zinc within the crystal was higher.The test results in the industrial solution demonstrated that the introduction of seeds expanded the pH range for goethite formation and growth,and the zinc loss per ton of iron removed was reduced by 50.91 kg(34.12%)and the iron residue reduced by 0.17 t(8.72%).展开更多
Suitable amounts of Al(OH)3, Na OH and synthetic hematite or goethite were taken to be digested under the simulated condition of the Bayer process and subsequently diluted with simulative Bayer red mud lotion, then th...Suitable amounts of Al(OH)3, Na OH and synthetic hematite or goethite were taken to be digested under the simulated condition of the Bayer process and subsequently diluted with simulative Bayer red mud lotion, then the synthetic hematite or goethite suspension was obtained. The flocculation effect of self-made modified poly(acrylic acids) flocculants containing hydroxamic acid groups(abbreviated as HPAA) on the synthetic hematite or goethite suspension was studied. The experimental results show that with the increase of the dosages of added flocculants, the average settling rate of the synthetic hematite or goethite suspension in the first 1min speeds up, the supernatant solids decrease. It could also be found that there is generally a decrease in the average settling rate of the synthetic hematite or goethite suspension in the first 1 min with increasing solid content of the suspension. When the solid content of hematite or goethite of the suspension is 50 g/L with 240 g/t dosage of HPAA, HPAA has a better flocculation effect on the synthetic goethite suspension than on the synthetic hematite suspension. The adsorption mechanism of HPAA on the surface of hematite or goethite was investigated by Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).All the results suggest that HPAA is adsorbed on the hematite or goethite surface by a chemisorption, and it has a stronger adsorption on the goethite surface than on the hematite surface.展开更多
Effective use of low-grade goethite ores in steel industry is necessary to achieve cost reduction and solve the problem of resource shortage. Biomass as heating and reducing agent attract much more attention for utili...Effective use of low-grade goethite ores in steel industry is necessary to achieve cost reduction and solve the problem of resource shortage. Biomass as heating and reducing agent attract much more attention for utilization in ironmaking process due to its low-carbon, energy-saving, emission-cutting and low-cost. We investigate three types of biomass (corn straw, pine sawdust, rice husk powders) roasting reduction mechanism and the magnetism of the roasting products. Structure analysis indicates that 15% dosage of each biomass mixed with goethite ores roasting at 550-600 °C for 1h could be effectively converted into strong magnetic product, i.e. maghemite (γ-Fe2O3). Weak magnetic separation shows that under the magnetic field of 200 kA/m, goethite ores roasted by 15% of pine sawdust could achieve TFe 61.64% with the recovery of 79.75%, TFe 61.75% with the recovery of 80.16% for roasting with rice husk, and TFe 61.47% with the recovery of 81.28% for roasting with corn straw.展开更多
The removal of the antibiotic compound tetracycline hydrochloride (TC) was investigated by using goethite/H2O2 as a heterogeneous Fenton reagent. Five principle operational parameters, especially solution pH value, we...The removal of the antibiotic compound tetracycline hydrochloride (TC) was investigated by using goethite/H2O2 as a heterogeneous Fenton reagent. Five principle operational parameters, especially solution pH value, were taken into account to investigate how the heterogeneous Fenton process factors mediated the TC removal. This process was effective but seriously impacted by the pH value and temperature, as well as the dosages of α-FeOOH, TC and H2O2. Very interestingly, the acidic and alkaline aqueous medium conditions were both very favorable due to the occurrence of transformation of Fe(III) to Fe(II) on goethite surfaces reduced by TC at pH 3.0~4.0 even though with a low adsorption capacity of TC because its maximum adsorption of negatively charged form occurred at pH around 8.0[1], thereby greatly promoting the TC Fenton oxidative elimination. However, a rapid initial TC decay was observed at the first 5 min, followed by a much slower retardation stage, which was likely because the reductive transformation of Fe(III) to Fe(II) by TC in the solution was inhibited as the Fenton reaction proceeded. Moreover, the hydroxyl radical scavenger t-butanol addition can decrease the removal rate of TC in the goethite/H2O2 system to a certain extent. This further indicated that the main reactive species in this process were hydroxyl radicals[2]. All the goethite-catalysed heterogeneous Fenton reactions are responsible for the TC removal following the Langmuir-Hinshelwood model, were well fitted to pseudo-first order kinetics (R2】0.99), and their apparent activation energy (E) for this Fenton-like reaction was 31.86 kJ mol 1, a low value that is highly consistent with the ease of TC decay greatly enhanced by the temperature rise, indicated that the interfacial controlling interactions such as a proton induced solubilization and a reductive dissolution of goethite can clearly improve its Fenton catalytic activity[3], and these dissolution processes may not be effective in some cases, while the TC adsorption process may always play an important role to control the TC removal rate during the Fenton reaction.展开更多
Agricultural liming materials are often applied to the adjustment of soil acidity and the improvement of plant growth and microbial functionality.Relatively low-grade agricultural lime was found to contain up to 125 m...Agricultural liming materials are often applied to the adjustment of soil acidity and the improvement of plant growth and microbial functionality.Relatively low-grade agricultural lime was found to contain up to 125 mg/kg arsenic(As),which is above any fertilizing materials’ toxicity threshold limit.Several techniques were employed to determine the speciation of the arsenic.Results from microprobe analyses suggest that minor minerals such as black and brown dendrites are the source of high arsenic concentrations in the samples.X-ray fluorescence spectroscopy provided further information that ferrihydrite and crystalline goethite are responsible for hosting the high concentration of arsenic with Fe/As molar ratio in around 100.A five-step sequential extraction demon-展开更多
In light of the problems of low-quality and low degree of comprehensive utilization of Guangdong muscovite-type kaolin, the reasons affecting the quality of kaolin were found to be a small amount of maroon powdery goe...In light of the problems of low-quality and low degree of comprehensive utilization of Guangdong muscovite-type kaolin, the reasons affecting the quality of kaolin were found to be a small amount of maroon powdery goethite adhering to the surface of kaolin and minor muscovite affecting the firing whiteness of products. The ores were dealt with by using the new combined process of attritioning-classifieation-bleaching and flotation. The separation of kaolin from muscovite, quartz and feldspar can come true through the new process. The high-quality kaolin with the firing whiteness of 91% can be obtained, and the muscovite is comprehensively recovered by adopting the key technology of flotation. The content of high-purity muscovite produced is over 99%. The muscovite discarded by original process can be comprehensively recovered.展开更多
Automated core scanning technologies for mineralogical characterisation of diamond core, drill chips pulps is now an established technique, particularly in the Australian iron ore industry, for mineral analysis in exp...Automated core scanning technologies for mineralogical characterisation of diamond core, drill chips pulps is now an established technique, particularly in the Australian iron ore industry, for mineral analysis in exploration and mining. Application of reflectance spectroscopy over the 400–2500 nm, visible to near-infrared wavelength range, has been used to characterise the iron ore oxide mineralogy of bedded iron deposit (BID) derived iron ores in India (Thangavelu et al., 2011) and Brazil (da Costa et al., 2009), and used to define the ore and gangue (e.g., clay) mineralogy in ironstone or channel iron deposits (CID) in the Pilbara region of Western Australia (e.g., Haest et al., 2012).展开更多
基金Project(2018YFC1900403) supported by the National Key Research and Development Program of ChinaProject(CX20210197) supported by the Postgraduate Scientific Research Innovation Project of Hunan Province,China+1 种基金Project(202206370103) supported by the China Scholarship CouncilProject(2021zzts0115) supported by the Fundamental Research Funds for the Central Universities,China。
文摘The goethite residue generated from zinc hydrometallurgy is classified as hazardous solid waste,produced in large quantities,and results in significant zinc loss.The study was conducted on removing iron from FeSO_(4)-ZnSO_(4) solution,employing seed-induced nucleation methods.Analysis of the iron removal rate,residue structure,morphology,and elemental composition involved ICP,XRD,FT-IR,and SEM.The existing state of zinc was investigated by combining step-by-step dissolution using hydrochloric acid.Concurrently,iron removal tests were extended to industrial solutions to assess the influence of seeds and solution pH on zinc loss and residue yield.The results revealed that seed addition increased the iron removal rate by 3%,elevated the residual iron content by 6.39%,and mitigated zinc loss by 29.55%in the simulated solution.Seed-induced nucleation prevented excessive nuclei formation,fostering crystal stable growth and high crystallinity.In addition,the zinc content of surface adsorption and crystal internal embedding in the residue was determined,and the zinc distribution on the surface was dense.In contrast,the total amount of zinc within the crystal was higher.The test results in the industrial solution demonstrated that the introduction of seeds expanded the pH range for goethite formation and growth,and the zinc loss per ton of iron removed was reduced by 50.91 kg(34.12%)and the iron residue reduced by 0.17 t(8.72%).
基金Project(51174231)supported by National Natural Science Foundation of China
文摘Suitable amounts of Al(OH)3, Na OH and synthetic hematite or goethite were taken to be digested under the simulated condition of the Bayer process and subsequently diluted with simulative Bayer red mud lotion, then the synthetic hematite or goethite suspension was obtained. The flocculation effect of self-made modified poly(acrylic acids) flocculants containing hydroxamic acid groups(abbreviated as HPAA) on the synthetic hematite or goethite suspension was studied. The experimental results show that with the increase of the dosages of added flocculants, the average settling rate of the synthetic hematite or goethite suspension in the first 1min speeds up, the supernatant solids decrease. It could also be found that there is generally a decrease in the average settling rate of the synthetic hematite or goethite suspension in the first 1 min with increasing solid content of the suspension. When the solid content of hematite or goethite of the suspension is 50 g/L with 240 g/t dosage of HPAA, HPAA has a better flocculation effect on the synthetic goethite suspension than on the synthetic hematite suspension. The adsorption mechanism of HPAA on the surface of hematite or goethite was investigated by Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).All the results suggest that HPAA is adsorbed on the hematite or goethite surface by a chemisorption, and it has a stronger adsorption on the goethite surface than on the hematite surface.
文摘Effective use of low-grade goethite ores in steel industry is necessary to achieve cost reduction and solve the problem of resource shortage. Biomass as heating and reducing agent attract much more attention for utilization in ironmaking process due to its low-carbon, energy-saving, emission-cutting and low-cost. We investigate three types of biomass (corn straw, pine sawdust, rice husk powders) roasting reduction mechanism and the magnetism of the roasting products. Structure analysis indicates that 15% dosage of each biomass mixed with goethite ores roasting at 550-600 °C for 1h could be effectively converted into strong magnetic product, i.e. maghemite (γ-Fe2O3). Weak magnetic separation shows that under the magnetic field of 200 kA/m, goethite ores roasted by 15% of pine sawdust could achieve TFe 61.64% with the recovery of 79.75%, TFe 61.75% with the recovery of 80.16% for roasting with rice husk, and TFe 61.47% with the recovery of 81.28% for roasting with corn straw.
文摘The removal of the antibiotic compound tetracycline hydrochloride (TC) was investigated by using goethite/H2O2 as a heterogeneous Fenton reagent. Five principle operational parameters, especially solution pH value, were taken into account to investigate how the heterogeneous Fenton process factors mediated the TC removal. This process was effective but seriously impacted by the pH value and temperature, as well as the dosages of α-FeOOH, TC and H2O2. Very interestingly, the acidic and alkaline aqueous medium conditions were both very favorable due to the occurrence of transformation of Fe(III) to Fe(II) on goethite surfaces reduced by TC at pH 3.0~4.0 even though with a low adsorption capacity of TC because its maximum adsorption of negatively charged form occurred at pH around 8.0[1], thereby greatly promoting the TC Fenton oxidative elimination. However, a rapid initial TC decay was observed at the first 5 min, followed by a much slower retardation stage, which was likely because the reductive transformation of Fe(III) to Fe(II) by TC in the solution was inhibited as the Fenton reaction proceeded. Moreover, the hydroxyl radical scavenger t-butanol addition can decrease the removal rate of TC in the goethite/H2O2 system to a certain extent. This further indicated that the main reactive species in this process were hydroxyl radicals[2]. All the goethite-catalysed heterogeneous Fenton reactions are responsible for the TC removal following the Langmuir-Hinshelwood model, were well fitted to pseudo-first order kinetics (R2】0.99), and their apparent activation energy (E) for this Fenton-like reaction was 31.86 kJ mol 1, a low value that is highly consistent with the ease of TC decay greatly enhanced by the temperature rise, indicated that the interfacial controlling interactions such as a proton induced solubilization and a reductive dissolution of goethite can clearly improve its Fenton catalytic activity[3], and these dissolution processes may not be effective in some cases, while the TC adsorption process may always play an important role to control the TC removal rate during the Fenton reaction.
文摘Agricultural liming materials are often applied to the adjustment of soil acidity and the improvement of plant growth and microbial functionality.Relatively low-grade agricultural lime was found to contain up to 125 mg/kg arsenic(As),which is above any fertilizing materials’ toxicity threshold limit.Several techniques were employed to determine the speciation of the arsenic.Results from microprobe analyses suggest that minor minerals such as black and brown dendrites are the source of high arsenic concentrations in the samples.X-ray fluorescence spectroscopy provided further information that ferrihydrite and crystalline goethite are responsible for hosting the high concentration of arsenic with Fe/As molar ratio in around 100.A five-step sequential extraction demon-
文摘In light of the problems of low-quality and low degree of comprehensive utilization of Guangdong muscovite-type kaolin, the reasons affecting the quality of kaolin were found to be a small amount of maroon powdery goethite adhering to the surface of kaolin and minor muscovite affecting the firing whiteness of products. The ores were dealt with by using the new combined process of attritioning-classifieation-bleaching and flotation. The separation of kaolin from muscovite, quartz and feldspar can come true through the new process. The high-quality kaolin with the firing whiteness of 91% can be obtained, and the muscovite is comprehensively recovered by adopting the key technology of flotation. The content of high-purity muscovite produced is over 99%. The muscovite discarded by original process can be comprehensively recovered.
文摘Automated core scanning technologies for mineralogical characterisation of diamond core, drill chips pulps is now an established technique, particularly in the Australian iron ore industry, for mineral analysis in exploration and mining. Application of reflectance spectroscopy over the 400–2500 nm, visible to near-infrared wavelength range, has been used to characterise the iron ore oxide mineralogy of bedded iron deposit (BID) derived iron ores in India (Thangavelu et al., 2011) and Brazil (da Costa et al., 2009), and used to define the ore and gangue (e.g., clay) mineralogy in ironstone or channel iron deposits (CID) in the Pilbara region of Western Australia (e.g., Haest et al., 2012).