The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove...The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.展开更多
We prove the global existence and exponential decay of strong solutions to the three-dimensional nonhomogeneous asymmetric fluid equations with nonnegative density provided that the initial total energy is suitably sm...We prove the global existence and exponential decay of strong solutions to the three-dimensional nonhomogeneous asymmetric fluid equations with nonnegative density provided that the initial total energy is suitably small.Note that although the system degenerates near vacuum,there is no need to require compatibility conditions for the initial data via time-weighted techniques.展开更多
This paper concerns the global existence of strong solutions to the 3 D compressible isothermal Navier-Stokes equations with a vacuum at infinity.Based on the special structure of the Zlotnik inequality,the time unifo...This paper concerns the global existence of strong solutions to the 3 D compressible isothermal Navier-Stokes equations with a vacuum at infinity.Based on the special structure of the Zlotnik inequality,the time uniform upper bounds for density are established through some time-dependant a priori estimates under the assumption that the total mass is suitably small.展开更多
This paper studies the strong convergence of the quantum lattice Boltzmann(QLB)scheme for the nonlinear Dirac equations for Gross-Neveu model in 1+1 dimensions.The initial data for the scheme are assumed to be converg...This paper studies the strong convergence of the quantum lattice Boltzmann(QLB)scheme for the nonlinear Dirac equations for Gross-Neveu model in 1+1 dimensions.The initial data for the scheme are assumed to be convergent in L^(2).Then for any T≥0 the corresponding solutions for the quantum lattice Boltzmann scheme are shown to be convergent in C([0,T];L^(2)(R^(1)))to the strong solution to the nonlinear Dirac equations as the mesh sizes converge to zero.In the proof,at first a Glimm type functional is introduced to establish the stability estimates for the difference between two solutions for the corresponding quantum lattice Boltzmann scheme,which leads to the compactness of the set of the solutions for the quantum lattice Boltzmann scheme.Finally the limit of any convergent subsequence of the solutions for the quantum lattice Boltzmann scheme is shown to coincide with the strong solution to a Cauchy problem for the nonlinear Dirac equations.展开更多
In this paper,the Cauchy problem for the two layer viscous shallow water equations is investigated with third-order surface-tension terms and a low regularity assumption on the initial data.The global existence and un...In this paper,the Cauchy problem for the two layer viscous shallow water equations is investigated with third-order surface-tension terms and a low regularity assumption on the initial data.The global existence and uniqueness of the strong solution in a hybrid Besov space are proved by using the Littlewood-Paley decomposition and Friedrichs'regularization method.展开更多
文摘The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.
基金supported by National Natural Science Foundation of China(11701193,11671086)Natural Science Foundation of Fujian Province(2018J05005,2017J01562)+3 种基金Program for Innovative Research Team in Science and Technology in Fujian Province University Quanzhou High-Level Talents Support Plan(2017ZT012)supported by National Natural Science Foundation of China(11901474)the Chongqing Talent Plan for Young Topnotch Talents(CQYC202005074)the Innovation Support Program for Chongqing Overseas Returnees(cx2020082).
文摘We prove the global existence and exponential decay of strong solutions to the three-dimensional nonhomogeneous asymmetric fluid equations with nonnegative density provided that the initial total energy is suitably small.Note that although the system degenerates near vacuum,there is no need to require compatibility conditions for the initial data via time-weighted techniques.
基金partially supported by the National Natural Science Foundation of China(11701192)。
文摘This paper concerns the global existence of strong solutions to the 3 D compressible isothermal Navier-Stokes equations with a vacuum at infinity.Based on the special structure of the Zlotnik inequality,the time uniform upper bounds for density are established through some time-dependant a priori estimates under the assumption that the total mass is suitably small.
基金partially supported by the NSFC(11421061,12271507)the Natural Science Foundation of Shanghai(15ZR1403900)。
文摘This paper studies the strong convergence of the quantum lattice Boltzmann(QLB)scheme for the nonlinear Dirac equations for Gross-Neveu model in 1+1 dimensions.The initial data for the scheme are assumed to be convergent in L^(2).Then for any T≥0 the corresponding solutions for the quantum lattice Boltzmann scheme are shown to be convergent in C([0,T];L^(2)(R^(1)))to the strong solution to the nonlinear Dirac equations as the mesh sizes converge to zero.In the proof,at first a Glimm type functional is introduced to establish the stability estimates for the difference between two solutions for the corresponding quantum lattice Boltzmann scheme,which leads to the compactness of the set of the solutions for the quantum lattice Boltzmann scheme.Finally the limit of any convergent subsequence of the solutions for the quantum lattice Boltzmann scheme is shown to coincide with the strong solution to a Cauchy problem for the nonlinear Dirac equations.
基金the NSFC(11571046,11671225)the ISF-NSFC joint research program NSFC(11761141008)the BJNSF(1182004)。
文摘In this paper,the Cauchy problem for the two layer viscous shallow water equations is investigated with third-order surface-tension terms and a low regularity assumption on the initial data.The global existence and uniqueness of the strong solution in a hybrid Besov space are proved by using the Littlewood-Paley decomposition and Friedrichs'regularization method.