针对雷达目标散射中心GTD(Geometric Theory of Diffraction)模型最大似然估计中存在的高维、非线性、混合参数估计问题,提出一种基于协同粒子群优化算法的参数估计方法.该方法能够同时估计得到散射中心的类型、幅度和位置参数,且对初...针对雷达目标散射中心GTD(Geometric Theory of Diffraction)模型最大似然估计中存在的高维、非线性、混合参数估计问题,提出一种基于协同粒子群优化算法的参数估计方法.该方法能够同时估计得到散射中心的类型、幅度和位置参数,且对初始值不敏感,与基于RELAX的估计方法相比,不需要反复迭代估计,降低了计算复杂度.仿真实验结果表明,该算法能够较准确地估计得到GTD模型的散射中心参数.展开更多
几何绕射理论(Geometrical Theory of Diffraction,GTD)模型能够精确描述高频区雷达目标的电磁散射机理。该文在分析雷达回波稀疏特性的基础上,将参数估计问题转化为压缩感知理论中的稀疏信号重构问题,据此提出了一种基于压缩感知的2维...几何绕射理论(Geometrical Theory of Diffraction,GTD)模型能够精确描述高频区雷达目标的电磁散射机理。该文在分析雷达回波稀疏特性的基础上,将参数估计问题转化为压缩感知理论中的稀疏信号重构问题,据此提出了一种基于压缩感知的2维GTD模型参数估计方法。该方法首先利用2维傅里叶变换成像确定目标散射中心的支撑区域,然后在支撑区域内对散射中心的GTD参数进行估计,最后利用聚类方法和最小二乘方法对估计结果进行修正。仿真和暗室测量数据实验结果表明,与现有方法相比,所提方法能有效改善模型参数的估计性能,且对提高散射中心类型参数的估计精度更为明显。展开更多
电离层中释放的金属蒸气产生人工等离子体云团,其可显著改变无线电波传播。本文利用几何绕射理论(geometrical theory of diffraction, GTD)和有限元法(finite element method, FEM)相结合的方法,给出了经由天线、人工等离子云团和无人...电离层中释放的金属蒸气产生人工等离子体云团,其可显著改变无线电波传播。本文利用几何绕射理论(geometrical theory of diffraction, GTD)和有限元法(finite element method, FEM)相结合的方法,给出了经由天线、人工等离子云团和无人机(unmanned aerial vehicle, UAV)群组成的传播链路中信号强度计算方法。利用30~70 MHz甚高频(very high frequency, VHF)信号研究人工等离子体云团与UAV群的复合散射特性,得出如下结论:接收功率随着信号频率增加呈下降趋势;当机群由N架UAV构成时,阵因子迭加使机群雷达散射截面(radar cross section, RCS)出现一定的起伏,同相迭加时,接收功率可比单个UAV高约20lg N dB;利用人工等离子体云团散射可实现VHF频段用于对米级尺度RCS目标进行超视距探测,有助于解决紧急情况下电离层扰动对高频探测的不利影响。展开更多
首先用基于几何绕射理论的GTD(Geometrical theory of diffraction)模型来精确描述雷达目标的高频电磁散射特性;同时,提出一种可应用于目标识别的散射中心特征提取快速算法:基于传播算子(Propagator)的多重信号特征算法(PM-MUSIC)。其...首先用基于几何绕射理论的GTD(Geometrical theory of diffraction)模型来精确描述雷达目标的高频电磁散射特性;同时,提出一种可应用于目标识别的散射中心特征提取快速算法:基于传播算子(Propagator)的多重信号特征算法(PM-MUSIC)。其核心思想是利用传播算子法快速计算出噪声子空间,取代了原MUSIC方法中利用特征值分解获取噪声子空间的矩阵分解步骤。通过计算量的比较,说明PM-MUSIC算法较原MUSIC方法有效提高了运算效率。最后,仿真实验表明,PM-MUSIC算法在快速估计的基础上,仍具有良好的精度和较高的分辨率,可有效地提取以边缘绕射等为主要散射形式的隐身目标的散射中心。展开更多
文摘针对雷达目标散射中心GTD(Geometric Theory of Diffraction)模型最大似然估计中存在的高维、非线性、混合参数估计问题,提出一种基于协同粒子群优化算法的参数估计方法.该方法能够同时估计得到散射中心的类型、幅度和位置参数,且对初始值不敏感,与基于RELAX的估计方法相比,不需要反复迭代估计,降低了计算复杂度.仿真实验结果表明,该算法能够较准确地估计得到GTD模型的散射中心参数.
文摘几何绕射理论(Geometrical Theory of Diffraction,GTD)模型能够精确描述高频区雷达目标的电磁散射机理。该文在分析雷达回波稀疏特性的基础上,将参数估计问题转化为压缩感知理论中的稀疏信号重构问题,据此提出了一种基于压缩感知的2维GTD模型参数估计方法。该方法首先利用2维傅里叶变换成像确定目标散射中心的支撑区域,然后在支撑区域内对散射中心的GTD参数进行估计,最后利用聚类方法和最小二乘方法对估计结果进行修正。仿真和暗室测量数据实验结果表明,与现有方法相比,所提方法能有效改善模型参数的估计性能,且对提高散射中心类型参数的估计精度更为明显。
文摘电离层中释放的金属蒸气产生人工等离子体云团,其可显著改变无线电波传播。本文利用几何绕射理论(geometrical theory of diffraction, GTD)和有限元法(finite element method, FEM)相结合的方法,给出了经由天线、人工等离子云团和无人机(unmanned aerial vehicle, UAV)群组成的传播链路中信号强度计算方法。利用30~70 MHz甚高频(very high frequency, VHF)信号研究人工等离子体云团与UAV群的复合散射特性,得出如下结论:接收功率随着信号频率增加呈下降趋势;当机群由N架UAV构成时,阵因子迭加使机群雷达散射截面(radar cross section, RCS)出现一定的起伏,同相迭加时,接收功率可比单个UAV高约20lg N dB;利用人工等离子体云团散射可实现VHF频段用于对米级尺度RCS目标进行超视距探测,有助于解决紧急情况下电离层扰动对高频探测的不利影响。
文摘首先用基于几何绕射理论的GTD(Geometrical theory of diffraction)模型来精确描述雷达目标的高频电磁散射特性;同时,提出一种可应用于目标识别的散射中心特征提取快速算法:基于传播算子(Propagator)的多重信号特征算法(PM-MUSIC)。其核心思想是利用传播算子法快速计算出噪声子空间,取代了原MUSIC方法中利用特征值分解获取噪声子空间的矩阵分解步骤。通过计算量的比较,说明PM-MUSIC算法较原MUSIC方法有效提高了运算效率。最后,仿真实验表明,PM-MUSIC算法在快速估计的基础上,仍具有良好的精度和较高的分辨率,可有效地提取以边缘绕射等为主要散射形式的隐身目标的散射中心。