Upland cotton has the highest yield,and accounts for >95% of world cotton production.Decoding upland cotton genomes will undoubtedly provide the ultimate reference and resource for structural,functional,and evoluti...Upland cotton has the highest yield,and accounts for >95% of world cotton production.Decoding upland cotton genomes will undoubtedly provide the ultimate reference and resource for structural,functional,and evolutionary studies of the species.Here,we employed GeneTrek and展开更多
The situation of global warming imparts negative impacts on crop growth and development.Cotton is the most important fiber crop around the globe.However,frequent drought episodes pose serious threats to cotton product...The situation of global warming imparts negative impacts on crop growth and development.Cotton is the most important fiber crop around the globe.However,frequent drought episodes pose serious threats to cotton production worldwide.Due to the complex genetic structure of drought tolerance,the development of a tolerant cultivar is cumbersome via conventional breeding.Multiple omics techniques have appeared as successful tool for cotton improvement in drought tolerance.Advanced omics-based biotechniques have paved the way for generation of omics data like transcriptomics,genomics,metabolomics and proteomics,which greatly expand the knowledge of cotton response to drought stress.Omics methodologies and have provided ways for the identification of quantitative trait loci(QTLs),gene regulatory networks,and other regulatory pathways against drought stress in cotton.These resources could speed up the discovery and incorporation of drought tolerant traits in the elite genotypes.The genome wide association study(GWAS),gene-editing system CRISPER/Cas9,gene silencing through RNAi are efficient tools to explore the molecular mechanism of drought tolerance and facilitate the identification of mechanisms and candidate genes for the improvement of drought tolerance in cotton.展开更多
文摘Upland cotton has the highest yield,and accounts for >95% of world cotton production.Decoding upland cotton genomes will undoubtedly provide the ultimate reference and resource for structural,functional,and evolutionary studies of the species.Here,we employed GeneTrek and
文摘The situation of global warming imparts negative impacts on crop growth and development.Cotton is the most important fiber crop around the globe.However,frequent drought episodes pose serious threats to cotton production worldwide.Due to the complex genetic structure of drought tolerance,the development of a tolerant cultivar is cumbersome via conventional breeding.Multiple omics techniques have appeared as successful tool for cotton improvement in drought tolerance.Advanced omics-based biotechniques have paved the way for generation of omics data like transcriptomics,genomics,metabolomics and proteomics,which greatly expand the knowledge of cotton response to drought stress.Omics methodologies and have provided ways for the identification of quantitative trait loci(QTLs),gene regulatory networks,and other regulatory pathways against drought stress in cotton.These resources could speed up the discovery and incorporation of drought tolerant traits in the elite genotypes.The genome wide association study(GWAS),gene-editing system CRISPER/Cas9,gene silencing through RNAi are efficient tools to explore the molecular mechanism of drought tolerance and facilitate the identification of mechanisms and candidate genes for the improvement of drought tolerance in cotton.