期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Impact of Crop Rotation on Pathotype and Genetic Structure of Phythophthora sojae in Fields
1
作者 Zhao Li-ming Li Shuang +6 位作者 Sui Zhe Huang Jing Chen Qiu-ming Suo Bing Ding Jun-jie Liu Wei-ting Wen Jing-zhi 《Journal of Northeast Agricultural University(English Edition)》 CAS 2016年第2期1-11,共11页
To estimate the impact of crop rotation on the pathotype and genetic structure of Phythophthora sojae in fields, 372 isolates of P. sojae were obtained from long-term localisation experimental fields in Heilongjiang P... To estimate the impact of crop rotation on the pathotype and genetic structure of Phythophthora sojae in fields, 372 isolates of P. sojae were obtained from long-term localisation experimental fields in Heilongjiang Province of China. The hypocotyl inoculation method was used to characterize the virulence of P. sojae on 13 differential cultivars, and the amplified fragment length polymorphism(AFLP) technique was used to analyze difference in the genetic structure of P. sojae. The results indicated that an abundant diversity of genetic structures and pathotypes of P. sojae, a more uniform distribution of pathotypes and less dominance of pathotypes occurred in corn-soybean and wheat-soybean rotation fields than in a continuous soybean mono-cropping field. These findings suggested that P. sojae did not easily become the dominant race in rotation fields, which maintain disease resistance in soybean varieties. Therefore, the results of this study suggested that Phytophthora stem and root rot of soybeans could be effectively controlled by rotating soybeans with non-host crops of corn and wheat. 展开更多
关键词 Phytophthora sojae pathotype composition genetic structure crop rotation amplified fragment length polymorphism(AFLP)
在线阅读 下载PDF
Research on three-dimensional attack area based on improved backtracking and ALPS-GP algorithms of air-to-air missile
2
作者 ZHANG Haodi WANG Yuhui HE Jiale 《Journal of Systems Engineering and Electronics》 2025年第1期292-310,共19页
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t... In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios. 展开更多
关键词 air combat three-dimensional attack area improved backtracking algorithm age-layered population structure genetic programming(ALPS-GP) gradient descent algorithm
在线阅读 下载PDF
Comparison on construction of strut-and-tie models for reinforced concrete deep beams 被引量:2
3
作者 仇一颗 刘霞 《Journal of Central South University》 SCIE EI CAS 2011年第5期1685-1692,共8页
With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for dee... With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples. 展开更多
关键词 reinforced concrete deep beam topology optimization strut-and-tie model genetic evolutionary structural optimization
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部