期刊文献+
共找到28,624篇文章
< 1 2 250 >
每页显示 20 50 100
An improved genetic algorithm for causal discovery
1
作者 MAO Tengjiao BU Xianjin +2 位作者 CAI Chunxiao LU Yue DU Jing 《Journal of Systems Engineering and Electronics》 2025年第3期768-777,共10页
The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to... The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm. 展开更多
关键词 genetic algorithm(ga) causal discovery convergence rate fitness function mutation operator
在线阅读 下载PDF
Topological optimization of ballistic protective structures through genetic algorithms in a vulnerability-driven environment
2
作者 Salvatore Annunziata Luca Lomazzi +1 位作者 Marco Giglio Andrea Manes 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期125-137,共13页
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne... Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from. 展开更多
关键词 Topological optimization Protective structure genetic algorithm SURVIVABILITY VULNERABILITY
在线阅读 下载PDF
Automatic Identification of Tomato Maturation Using Multilayer Feed Forward Neural Network with Genetic Algorithms (GA) 被引量:1
3
作者 FANG Jun-long ZHANG Chang-li WANG Shu-wen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2004年第2期179-183,共5页
We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use mul... We set up computer vision system for tomato images. By using this system, the RGB value of tomato image was converted into HIS value whose H was used to acquire the color character of the surface of tomato. To use multilayer feed forward neural network with GA can finish automatic identification of tomato maturation. The results of experiment showed that the accuracy was up to 94%. 展开更多
关键词 tomato maturation computer vision artificial neural network genetic algorithms
在线阅读 下载PDF
Research on three-dimensional attack area based on improved backtracking and ALPS-GP algorithms of air-to-air missile
4
作者 ZHANG Haodi WANG Yuhui HE Jiale 《Journal of Systems Engineering and Electronics》 2025年第1期292-310,共19页
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t... In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios. 展开更多
关键词 air combat three-dimensional attack area improved backtracking algorithm age-layered population structure genetic programming(ALPS-GP) gradient descent algorithm
在线阅读 下载PDF
Job shop scheduling problem with alternative machines using genetic algorithms 被引量:10
5
作者 I.A.Chaudhry 《Journal of Central South University》 SCIE EI CAS 2012年第5期1322-1333,共12页
The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job ther... The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job there is only one process plan that prescribes the sequence of operations and the machine on which each operation has to be performed.However,JSP with alternative machines for various operations is an extension of the classical JSP,which allows an operation to be processed by any machine from a given set of machines.Since this problem requires an additional decision of machine allocation during scheduling,it is much more complex than JSP.We present a domain independent genetic algorithm(GA) approach for the job shop scheduling problem with alternative machines.The GA is implemented in a spreadsheet environment.The performance of the proposed GA is analyzed by comparing with various problem instances taken from the literatures.The result shows that the proposed GA is competitive with the existing approaches.A simplified approach that would be beneficial to both practitioners and researchers is presented for solving scheduling problems with alternative machines. 展开更多
关键词 alternative machine genetic algorithm (ga job shop scheduling SPREADSHEET
在线阅读 下载PDF
Self-adaptive PID controller of microwave drying rotary device tuning on-line by genetic algorithms 被引量:6
6
作者 杨彪 梁贵安 +5 位作者 彭金辉 郭胜惠 李玮 张世敏 李英伟 白松 《Journal of Central South University》 SCIE EI CAS 2013年第10期2685-2692,共8页
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi... The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design. 展开更多
关键词 industrial microwave DRYING ROTARY device SELF-ADAPTIVE PID controller genetic algorithm ON-LINE tuning SELENIUM-ENRICHED SLAG
在线阅读 下载PDF
Analysis of the diversity of population and convergence of genetic algorithms based on Negentropy 被引量:2
7
作者 ZhangLianying WangAnmin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期215-219,共5页
With its wide use in different fields, the problem of the convergence of simple genetic algorithms (GAs) has been concerned. In the past, the research on the convergence of GAs was based on Holland's model theorem... With its wide use in different fields, the problem of the convergence of simple genetic algorithms (GAs) has been concerned. In the past, the research on the convergence of GAs was based on Holland's model theorem. The diversity of the evolutionary population and the convergence of GAs are studied by using the concept of negentropy based on the discussion of the characteristic of GA. Some test functions are used to test the convergence of GAs, and good results have been obtained. It is shown that the global optimization may be obtained by selecting appropriate parameters of simple GAs if the evolution time is enough. 展开更多
关键词 NEGENTROPY genetic algorithms diversity of evolutionary population convergence.
在线阅读 下载PDF
Simultaneous scheduling of machines and automated guided vehicles in flexible manufacturing systems using genetic algorithms 被引量:5
8
作者 I.A.Chaudhry S.Mahmood M.Shami 《Journal of Central South University》 SCIE EI CAS 2011年第5期1473-1486,共14页
The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain inde... The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model. 展开更多
关键词 automated guided vehicles (AGVs) SCHEDULING JOB-SHOP genetic algorithms flexible manufacturing system (FMS) SPREADSHEET
在线阅读 下载PDF
Forecasting and Evaluating the Efficiency of Test Generation Algorithms by Genetic Algorithm 被引量:1
9
作者 Shiyi Xu and Wei Cen School of Computers Shanghai University, Shanghai, China 200072 《湖南大学学报(自然科学版)》 EI CAS CSCD 2000年第S2期86-94,共9页
To generate a test set for a given circuit (including both combinational and sequential circuits), choice of an algorithm within a number of existing test generation algorithms to apply is bound to vary from circuit t... To generate a test set for a given circuit (including both combinational and sequential circuits), choice of an algorithm within a number of existing test generation algorithms to apply is bound to vary from circuit to circuit. In this paper, the genetic algorithms are used to construct the models of existing test generation algorithms in making such choice more easily. Therefore, we may forecast the testability parameters of a circuit before using the real test generation algorithm. The results also can be used to evaluate the efficiency of the existing test generation algorithms. Experimental results are given to convince the readers of the truth and the usefulness of this approach. 展开更多
关键词 TESTABILITY genetic algorithm Forecasting EVALUATING Test Generation.
在线阅读 下载PDF
DETERMINING THE STRUCTURES AND PARAMETERS OF RADIAL BASIS FUNCTION NEURAL NETWORKS USING IMPROVED GENETIC ALGORITHMS 被引量:1
10
作者 Meiqin Liu Jida Chen 《Journal of Central South University》 SCIE EI CAS 1998年第2期68-73,共6页
The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error t... The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks. 展开更多
关键词 RADIAL BASIS function NEURAL network genetic algorithms Akaike′s information CRITERION OVERFITTING
在线阅读 下载PDF
Error analysis on heading determination via genetic algorithms 被引量:1
11
作者 Zhong Bing Xu Jiangning Ma Heng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期673-676,共4页
A new error analysis method is presented via genetic algorithms for high precise heading determination model based on two total positioning stations (TPSs). The method has the ability to search all possible solution... A new error analysis method is presented via genetic algorithms for high precise heading determination model based on two total positioning stations (TPSs). The method has the ability to search all possible solution space by the genetic operators of elitist model and restriction. The result of analyzing the error of this model shows that the accuracy of this model is precise enough to meet the need of calibration for navigation systems on ship, and the search space is only 0. 03% of the total search space, and the precision of heading determination is 4" in a general dock. 展开更多
关键词 heading determination Sga genetic algorithms.
在线阅读 下载PDF
Family genetic algorithms based on gene exchange and its application 被引量:1
12
作者 Li Jianhua Ding Xiangqian +1 位作者 Wang Sun'an Yu Qing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期864-869,共6页
Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not... Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not as good as it was expected to be. Criticism of this algorithm includes the slow speed and premature result during convergence procedure. In order to improve the performance, the population size and individuals' space is emphatically described. The influence of individuals' space and population size on the operators is analyzed. And a novel family genetic algorithm (FGA) is put forward based on this analysis. In this novel algorithm, the optimum solution families closed to quality individuals is constructed, which is exchanged found by a search in the world space. Search will be done in this microspace. The family that can search better genes in a limited period of time would win a new life. At the same time, the best gene of this micro space with the basic population in the world space is exchanged. Finally, the FGA is applied to the function optimization and image matching through several experiments. The results show that the FGA possessed high performance. 展开更多
关键词 genetic algorithms function optimization image matching population size individual space.
在线阅读 下载PDF
Using Genetic Algorithms to Improve the Search of the Weight Space in Cascade-Correlation Neural Network 被引量:1
13
作者 E.A.Mayer, K. J. Cios, L. Berke & A. Vary(University of Toledo, Toledo, OH 43606, U. S. A.)(NASA Lewis Research Center, Cleveland, OH) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第2期9-21,共13页
In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a ... In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys. 展开更多
关键词 genetic algorithm Cascade correlation Weight space search Neural network.
在线阅读 下载PDF
Stochastic analysis and convergence velocity estimation of genetic algorithms 被引量:1
14
作者 GUO Guan-qi(郭观七) YU Shou-yi(喻寿益) 《Journal of Central South University of Technology》 2003年第1期58-63,共6页
Formulizations of mutation and crossover operators independent of representation of solutions are proposed. A kind of precisely quantitative Markov chain of populations of standard genetic algorithms is modeled. It is... Formulizations of mutation and crossover operators independent of representation of solutions are proposed. A kind of precisely quantitative Markov chain of populations of standard genetic algorithms is modeled. It is proved that inadequate parameters of mutation and crossover probabilities degenerate standard genetic algorithm to a class of random search algorithms without selection bias toward any solution based on fitness. After introducing elitist reservation, the stochastic matrix of Markov chain of the best-so-far individual with the highest fitness is derived.The average convergence velocity of genetic algorithms is defined as the mathematical expectation of the mean absorbing time steps that the best-so-far individual transfers from any initial solution to the global optimum. Using the stochastic matrix of the best-so-far individual, a theoretic method and the computing process of estimating the average convergence velocity are proposed. 展开更多
关键词 genetic algorithm OPERATOR formulization MARKOV CHAIN CONVERGENCE VELOCITY
在线阅读 下载PDF
Hybrid Genetic Algorithms with Fuzzy Logic Controller
15
作者 Zheng Dawei & Gen Mitsuo Department of Industrial and Systems Engineering, Ashikaga Institute of Technology, 326, Japan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第3期9-15,共7页
In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy com... In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper. 展开更多
关键词 Machine scheduling problem Hybrid genetic algorithms Fuzzy logic.
在线阅读 下载PDF
Satellite constellation design with genetic algorithms based on system performance
16
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSga) Pareto optimal set satellite constellation design surveillance performance
在线阅读 下载PDF
基于非支配排序遗传算法NSGA-Ⅲ的多目标屏蔽智能优化研究 被引量:1
17
作者 王梦琪 郑征 +3 位作者 梅其良 彭超 高静 周岩 《原子能科学技术》 北大核心 2025年第2期422-428,共7页
本文基于第3代非支配排序遗传算法(NSGA-Ⅲ)开展了多目标屏蔽智能优化方法研究。以乏燃料运输船舶为对象,采用多目标智能优化程序建立一维离散纵标计算模型,针对舱盖上方区域屏蔽结构(混凝土和聚乙烯厚度)进行优化设计,最终得到1组优化... 本文基于第3代非支配排序遗传算法(NSGA-Ⅲ)开展了多目标屏蔽智能优化方法研究。以乏燃料运输船舶为对象,采用多目标智能优化程序建立一维离散纵标计算模型,针对舱盖上方区域屏蔽结构(混凝土和聚乙烯厚度)进行优化设计,最终得到1组优化的屏蔽方案。基于优化后的屏蔽方案,建立真实的三维蒙特卡罗计算模型,和基于混凝土、聚乙烯或含硼硅树脂的方案进行对比,评估优化方案的屏蔽效果。评价指标包括屏蔽厚度、重量、总剂量率和价格等。结果显示,基于所开发的多目标屏蔽智能优化方法优化得到的方案各有特点,包含了多个优选的方案,为设计者提供了更丰富的选择。 展开更多
关键词 多目标优化算法 屏蔽 乏燃料运输船舶 第3代非支配排序遗传算法
在线阅读 下载PDF
基于GA-LSTM的桥梁缆索腐蚀钢丝力学性能预测模型 被引量:5
18
作者 缪长青 吕悦凯 万春风 《东南大学学报(自然科学版)》 北大核心 2025年第1期140-145,共6页
为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经... 为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经元数量、窗口大小4个超参数,以预测不同腐蚀特征状态下钢丝的力学性能。将其与传统LSTM和GA-反向传播模型的预测结果进行比较。结果表明,GA-LSTM模型具有更高的预测精度和鲁棒性。在屈服强度与极限强度预测效果方面,均方根误差(root mean square error, RMSE)、平均绝对误差(mean absolute error, MAE)、决定系数分别提高约44%~61%、43%~57%、35%~92%。在屈服应变与极限应变预测效果方面,RMSE、MAE、决定系数分别提高约0~46%、7%~49%、12%~229%。所建立的模型可以作为一个有用的工具支持桥梁缆索腐蚀安全性评估工作。 展开更多
关键词 桥梁缆索腐蚀钢丝 力学性能预测 时序预测 神经网络 遗传算法 超参数优化
在线阅读 下载PDF
基于PSO-GA模型的供水管网漏损预测研究 被引量:1
19
作者 彭燕莉 刘俊红 +2 位作者 陶修斌 覃佳肖 朱雅 《沈阳建筑大学学报(自然科学版)》 北大核心 2025年第1期121-129,共9页
准确、有效地定位供水管网中漏损位置,减少水资源浪费和降低检漏成本。基于EPANET软件构建供水管网水力模型,采用粒子群算法和遗传算法相结合方法对管网漏损预测模型进行优化求解、验证,以实现管网漏损定位和漏损程度判定;以西南地区某... 准确、有效地定位供水管网中漏损位置,减少水资源浪费和降低检漏成本。基于EPANET软件构建供水管网水力模型,采用粒子群算法和遗传算法相结合方法对管网漏损预测模型进行优化求解、验证,以实现管网漏损定位和漏损程度判定;以西南地区某城镇的供水管网为例,分别对单点和多点(2处及以上)漏损工况进行模拟评估。提出的供水管网漏损预测模型在单点漏损工况下,预测漏损量与实际漏损量的平均绝对百分比误差εmape小于3%,多点漏损量的εmape值均小于5.22%,且模拟定位节点与实际漏损点的拓扑距离绝大部分稳定在2以内。基于PSO-GA的漏损预测模型可有效地实现漏损定位与漏损程度的同步检测,并识别出多个近似节点,为检漏工作提供技术参考。 展开更多
关键词 供水管网 PSO-ga算法 漏损定位 EPANET
在线阅读 下载PDF
基于GA-RELM多特征优选的烟叶多部位正反面识别方法 被引量:1
20
作者 陈婷 赵晓琳 +5 位作者 张冀武 盖小雷 张晓伟 刘宇晨 王燕 龙杰 《湖南农业大学学报(自然科学版)》 北大核心 2025年第1期113-122,共10页
针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构... 针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构建正反面数据集,根据特征重要性和特征间的潜在关系,实现特征降维并构建新特征组合。其次,对正则化极限学习机(RELM)进行隐藏层偏置寻优,以提高模型实际应用性和分类精度。结果表明:与原极限学习机(ELM)相比,GA-RELM对自然状态下的烟叶正反面和多部位正反面的分类精度分别提高了0.84%和7.88%,运算时间分别减少2.56 s和5.72 s;与其他烟叶分级算法相比,GA-RELM在准确率、精确率、召回率、F1评分等多个指标上表现出明显优势。 展开更多
关键词 烤烟 烟叶分级 多特征优选 遗传算法 正则化极限学习机
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部