期刊文献+
共找到658篇文章
< 1 2 33 >
每页显示 20 50 100
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:16
1
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (PSO) fuzzy logic control genetic algorithms
在线阅读 下载PDF
基于GAPSO优化的注塑机注射速度模糊PID控制器
2
作者 张绍坤 沈加明 +2 位作者 胡燕海 傅挺 王舟挺 《计算机工程》 北大核心 2025年第5期239-248,共10页
针对一类伺服电机直接驱动油泵的注塑机液控系统,工业界通常采用PID控制方法进行控制,但其控制效果较差,难以达到较高的控制精度。为了改进PID控制,将模糊控制与PID控制相结合成为一种有效的方法。针对模糊PID算法参数调试过程中存在的... 针对一类伺服电机直接驱动油泵的注塑机液控系统,工业界通常采用PID控制方法进行控制,但其控制效果较差,难以达到较高的控制精度。为了改进PID控制,将模糊控制与PID控制相结合成为一种有效的方法。针对模糊PID算法参数调试过程中存在的操作繁琐、难以找到最优参数组合等问题,提出一种基于遗传粒子群算法(GAPSO)优化的模糊PID控制方法。对粒子群算法(PSO)进行改进,提出一种惯性因子随S函数变化的改进PSO算法(SDIF-PSO),在改进粒子群算法的基础上,将改进PSO算法与GA算法相结合,构建基于GAPSO算法优化的模糊PID控制器。利用Matlab/Simulink对注射过程进行仿真,实验结果表明,相比于传统的模糊PID控制器以及分别采用改进PSO算法和GA算法优化的模糊PID控制器,基于GAPSO优化的模糊PID控制器具有响应速度更快、超调量更小、稳态精度更高等优点。 展开更多
关键词 伺服电机 注塑机 注射速度 模糊PID 遗传粒子群算法 混合优化算法
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化 被引量:1
3
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 gapso-RBFNN 声学包 PBNR NSGA-II Pareto多目标解集
在线阅读 下载PDF
基于融合注意力机制BP神经网络的深基坑变形预测方法
4
作者 张明聚 秦胜旺 +3 位作者 李鹏飞 葛辰贺 杨萌 谢治天 《北京交通大学学报》 北大核心 2025年第2期95-104,共10页
针对单一反向传播(Back Propagation,BP)神经网络预测基坑开挖变形时泛化性差及容易出现局部最优解的问题,分别采用遗传算法(Genetic Algorithms,GA)、粒子群算法(Particle Swarm Optimization,PSO)进行优化,并融合注意力机制(Attention... 针对单一反向传播(Back Propagation,BP)神经网络预测基坑开挖变形时泛化性差及容易出现局部最优解的问题,分别采用遗传算法(Genetic Algorithms,GA)、粒子群算法(Particle Swarm Optimization,PSO)进行优化,并融合注意力机制(Attention)组合成GA-Attention-BP和PSO-Attention-BP神经网络模型.依托南京双子座基坑工程,采用PLAXIS 2D模拟了680组不同工况下围护结构及地表的变形特征,并结合20组南京地区基坑实测监测数据作为数据集,以均方误差(Mean Squared Error,MSE)、平均绝对误差(Mean Absolute Error,MAE)和决定系数(RSquare,R2)作为评价指标,将不同神经网络的预测值和实际监测值进行对比.研究结果表明:GAAttention-BP和PSO-Attention-BP的MSE分别为3.47和3.22,MAE分别为1.59和1.47,R2分别为0.93和0.96,较BP和Attention-BP神经网络有较大的性能提升,预测效果较好;基于注意力机制的权重分配结果表明,基坑深度和地下连续墙的宽度对围护结构变形的影响最为显著,其权重系数分别高达1.33和1.17. 展开更多
关键词 深基坑工程 数值模拟 注意力机制 反向传播 遗传算法 粒子群算法
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法
5
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子群-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
有向无环图建模的自动导引车任务调度优化
6
作者 胡毅 崔梦笙 +1 位作者 张曦阳 赵彦庆 《浙江大学学报(工学版)》 北大核心 2025年第8期1680-1688,共9页
针对生产线和仓库之间单载自动导引车(AGV)任务调度的行驶距离优化问题,考虑多种任务选择策略,提出基于二进制粒子群优化的嵌套算法框架(BPSO嵌套框架),求解优化调度方案.针对固定任务选择策略下的优化调度方案求解,考虑任务执行顺序约... 针对生产线和仓库之间单载自动导引车(AGV)任务调度的行驶距离优化问题,考虑多种任务选择策略,提出基于二进制粒子群优化的嵌套算法框架(BPSO嵌套框架),求解优化调度方案.针对固定任务选择策略下的优化调度方案求解,考虑任务执行顺序约束和任务节点信息随环境变化,以最小化AGV行驶总距离为目标,建立基于有向无环图建模的动态旅行商问题(DAGDTSP)模型,提出改进遗传算法(IGA)求解模型.实验结果表明,针对AGV任务调度方案的优化,利用IGA算法,能够有效地求解固定任务选择策略下的优化调度方案. BPSO嵌套框架能够提升求解质量,所求解的优化调度方案能够在一定程度上适应任务变化. DAGDTSP模型在不同环境参数设置的测试问题上具备准确性. 展开更多
关键词 任务调度 行驶总距离 有向无环图 遗传算法 粒子群优化算法
在线阅读 下载PDF
六自由度工业机器人运动学参数辨识
7
作者 胡明 郭玉奉 +1 位作者 杨景 杨帆 《机械设计与制造》 北大核心 2025年第6期314-319,共6页
作为运动控制的基础,机器人运动学参数辨识的误差模型对其精度存在影响。以六自由度机器人为对象,基于DH矩阵法建立机器人的运动学模型,进行仿真验证。分别从位置、姿态与位姿综合三个方面建立六种不同的误差模型并利用量子遗传算法分... 作为运动控制的基础,机器人运动学参数辨识的误差模型对其精度存在影响。以六自由度机器人为对象,基于DH矩阵法建立机器人的运动学模型,进行仿真验证。分别从位置、姿态与位姿综合三个方面建立六种不同的误差模型并利用量子遗传算法分别进行辨识仿真,仿真结果表明,误差模型5拥有较高的辨识精度和辨识稳定性,适合用于实际辨识实验。利用高精度相机测量机器人末端位姿,通过粒子群寻优算法求取机器人基坐标系与相机坐标系之间转换矩阵。基于视觉测量数据、量子遗传算法和粒子群算法,以误差模型5作为实际辨识模型分别进行辨识实验。结果表明,基于误差模型5的量子遗传算法辨识后的机器人末端综合位置误差的方差小,其值为0.1159mm2,曲线波动幅度小,且平均误差下降82.96%,有较高的辨识精度和辨识稳定性,可有效提升机器人末端的定位精度,为基于视觉的动态目标捕捉提供条件。 展开更多
关键词 机器人运动学 参数辨识 误差模型 量子遗传算法 粒子群算法 手眼标定
在线阅读 下载PDF
考虑站点转乘的公交接驳地铁站点群线路优化
8
作者 王连震 杜翼飞 +2 位作者 刘克毅 周铭 薛淑祺 《北京交通大学学报》 北大核心 2025年第4期41-51,共11页
为促进公交与地铁之间的有效接驳,针对地铁站点群周边接驳公交线路的客流时空分布及换乘效率进行协同优化研究.构建考虑系统总成本最小化和线网换乘需求最大化的多目标优化模型,并增设换乘时间成本和换乘次数的惩罚机制,对涉及两次或更... 为促进公交与地铁之间的有效接驳,针对地铁站点群周边接驳公交线路的客流时空分布及换乘效率进行协同优化研究.构建考虑系统总成本最小化和线网换乘需求最大化的多目标优化模型,并增设换乘时间成本和换乘次数的惩罚机制,对涉及两次或更多换乘的情况加以约束,促使系统在设计时尽可能减少不必要的换乘.引入自适应精英保留策略和惯性系数动态调整策略,设计并采用遗传粒子群混合算法来求解模型.研究结果表明:在接驳公交服务能力方面,相较于原有公交线网,优化后的公交载客量提升约23%;在经济性维度,乘客人均出行成本降低约9%;在算法性能上,所设计的混合优化算法较传统遗传算法运行速度提升15.4%.优化模型在换乘吸引力、人均出行成本等多个关键指标上均优于既有公交线路,验证了模型在提升接驳公交网络运营效率和服务质量方面的有效性,可以为城市公共交通系统的精细化管理和智能化升级提供参考. 展开更多
关键词 城市交通 地铁站点群 接驳公交线路 多目标协同优化 遗传粒子群混合算法
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:1
9
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 BP神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
GAPSO:一种高效的遗传粒子混合算法及其应用 被引量:27
10
作者 彭晓波 桂卫华 +2 位作者 黄志武 胡志坤 李勇刚 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第18期5025-5027,5031,共4页
在粒子群算法和遗传算法融合的基础上提出了一种新的算法(GAPSO)。该算法模仿自然界的个体成熟过程,对遗传算法中的每一代群体中的优秀个体,采用粒子群算法获得进一步的提高,使算法获得比遗传算法和粒子群算法更加好的优化效果。在FCRN... 在粒子群算法和遗传算法融合的基础上提出了一种新的算法(GAPSO)。该算法模仿自然界的个体成熟过程,对遗传算法中的每一代群体中的优秀个体,采用粒子群算法获得进一步的提高,使算法获得比遗传算法和粒子群算法更加好的优化效果。在FCRNN设计应用中表明该算法确实比遗传算法和粒子群算法有更加好的效果。 展开更多
关键词 遗传算法 粒子群算法 gapso FCRNN
在线阅读 下载PDF
航空发动机滑油系统建模、优化及应用研究 被引量:1
11
作者 黄世杰 张振生 +1 位作者 蔡景 张瑞 《系统仿真学报》 北大核心 2025年第5期1266-1279,共14页
针对基于试验方法开展滑油系统监测、诊断、预测等工作具备成本高、周期长等缺点,开展滑油系统仿真模型构建与优化并提出了模型在滑油系统健康管理中的应用。基于滑油系统元件物理特性,以某发动机滑油系统为例构建通风、供油、热力、回... 针对基于试验方法开展滑油系统监测、诊断、预测等工作具备成本高、周期长等缺点,开展滑油系统仿真模型构建与优化并提出了模型在滑油系统健康管理中的应用。基于滑油系统元件物理特性,以某发动机滑油系统为例构建通风、供油、热力、回油等子系统模型,并开展了滑油全系统模型构建与迭代求解;结合粒子群、遗传算法对模型进行优化,对比优化结果表明粒子群算法具有较好的收敛性与优化效果,不同典型工况下滑油系统工作参数平均误差从10%以上降至2%左右,具有一定的准确性;基于模型的可扩展性,结合滑油系统健康管理要求分析模型在滑油监测、诊断、预测等方面的应用,为滑油系统的健康管理提供支撑。 展开更多
关键词 航空发动机 滑油系统 粒子群优化 遗传算法 健康管理
在线阅读 下载PDF
基于GAPSO-SVM的航空发动机典型故障诊断 被引量:12
12
作者 张俊红 刘昱 +2 位作者 马文朋 马梁 李林洁 《天津大学学报》 EI CAS CSCD 北大核心 2012年第12期1057-1061,共5页
针对遗传算法(GA)和粒子群优化(PSO)算法优化支持向量机(SVM)存在容易陷入局部最优解、诊断精度相对较低、鲁棒性较差的问题,提出了一种结合GA、PSO、模拟退火算法的GAPSO优化算法,利用这种算法对SVM的参数进行了优化,优化后的算法能够... 针对遗传算法(GA)和粒子群优化(PSO)算法优化支持向量机(SVM)存在容易陷入局部最优解、诊断精度相对较低、鲁棒性较差的问题,提出了一种结合GA、PSO、模拟退火算法的GAPSO优化算法,利用这种算法对SVM的参数进行了优化,优化后的算法能够较好地调整算法的全局与局部搜索能力之间的平衡.通过对航空发动机典型故障的诊断研究表明,该方法不仅能够取得良好的分类效果,诊断精度高于BP神经网络、自组织神经网络、标准SVM、GA-SVM,而且有较好的鲁棒性,更适合在故障诊断中应用. 展开更多
关键词 支持向量机 遗传算法 粒子群优化算法 故障诊断
在线阅读 下载PDF
基于GAPSO混合算法的网格工作流调度研究 被引量:3
13
作者 张敏 余青松 +2 位作者 黄俊 宗文杰 周雁 《计算机应用与软件》 CSCD 2011年第4期236-238,241,共4页
网格工作流调度关注大规模的资源和任务调度,是一个复杂且具有挑战性的问题,它影响着网格工作流执行成功与否以及效率的高低。提出了基于遗传粒子群(GAPSO)的混合算法,引用了特殊的适应度函数,设定了动态的交叉和变异概率,并提出了动态... 网格工作流调度关注大规模的资源和任务调度,是一个复杂且具有挑战性的问题,它影响着网格工作流执行成功与否以及效率的高低。提出了基于遗传粒子群(GAPSO)的混合算法,引用了特殊的适应度函数,设定了动态的交叉和变异概率,并提出了动态切换算法的方法。结合各自算法的优势,在算法运行初期利用遗传算法的全局搜索能力进行优化搜索,在后期利用粒子群较强的局部搜索能力加快收敛速度。仿真结果表明该算法在执行时间方面有一定的优越性,能更有效地解决网格工作流调度问题。 展开更多
关键词 遗传算法 粒子群算法 网格工作流
在线阅读 下载PDF
基于内外双层多子群循环算法的柔性作业车间调度
14
作者 龙晓峰 李想 +1 位作者 张言松 畅申 《组合机床与自动化加工技术》 北大核心 2025年第7期196-200,共5页
针对柔性作业车间调度问题(FJSP),提出了一种基于内外双层多子群循环(HPGA)的优化算法。将遗传算法和粒子群算法结合的内外双层多子群算法用于柔性作业车间调度问题,以用来优化最大完工时间。HPGA算法采用内外双层结构,外层由遗传算法... 针对柔性作业车间调度问题(FJSP),提出了一种基于内外双层多子群循环(HPGA)的优化算法。将遗传算法和粒子群算法结合的内外双层多子群算法用于柔性作业车间调度问题,以用来优化最大完工时间。HPGA算法采用内外双层结构,外层由遗传算法组成多个子群,为算法提供全局搜索能力,内层采用粒子群算法,其种群由外层子群中的精英个体组成,为算法提供局部搜索能力;最后通过MK基准算例和不同算法进行对比,进一步验证所提算法的性能。实验表明,HPGA算法在求解柔性作业车间调度问题上取得了显著的改善效果。 展开更多
关键词 遗传算法 粒子群优化 柔性车间 双层多子群
在线阅读 下载PDF
基于GAPSO-SVM的多级齿轮箱故障诊断新方法 被引量:4
15
作者 杨秀芳 何亚鹏 +1 位作者 徐雨达 邵伟 《西安理工大学学报》 CAS 北大核心 2022年第4期519-525,共7页
多级齿轮箱是机械传动的重要部件,针对运行过程中的状态识别问题,研究并提出一种基于振动信号的小波包分解能量谱特征提取和支持向量机(support vector machine,SVM)的智能评估新方法。用小波包分解算法对振动信号进行分解,提取时频信... 多级齿轮箱是机械传动的重要部件,针对运行过程中的状态识别问题,研究并提出一种基于振动信号的小波包分解能量谱特征提取和支持向量机(support vector machine,SVM)的智能评估新方法。用小波包分解算法对振动信号进行分解,提取时频信号的能量谱构建多级齿轮箱状态特征集,训练SVM模型。针对SVM的惩罚因子C和高斯核参数g选择困难的问题,结合遗传算法(genetic algorithm,GA)和粒子群算法(particle swarm optimization,PSO)的基因粒子群算法(genetic algorithm-particle swarm optimization,GAPSO)优化SVM参数。GAPSO同时具有GA全局搜索的性能和PSO快速收敛特点。将优化后的SVM算法应用于多级齿轮箱故障诊断,结果表明,GAPSO-SVM模型故障识别精度为98.55%,高于基本的SVM、PSO-SVM和BP神经网络,而且泛化能力强,该方法更适合多级齿轮箱故障诊断。 展开更多
关键词 故障诊断 小波包分解能量谱 基因粒子群算法 支持向量机
在线阅读 下载PDF
基于混合遗传粒子群算法的机器人关节空间轨迹规划
16
作者 李建儒 龚堰珏 赵罘 《现代制造工程》 北大核心 2025年第6期84-91,共8页
为实现对矿用刮板的激光熔覆修复,针对保持激光熔覆机器人作业过程高效稳定的问题,根据机器人的运动学特性,研究了关节空间的轨迹规划方法,提出了一种混合遗传粒子群算法。该方法基于粒子群算法,通过构造自适应惯性权重和动态学习因子,... 为实现对矿用刮板的激光熔覆修复,针对保持激光熔覆机器人作业过程高效稳定的问题,根据机器人的运动学特性,研究了关节空间的轨迹规划方法,提出了一种混合遗传粒子群算法。该方法基于粒子群算法,通过构造自适应惯性权重和动态学习因子,引入遗传算法中的交叉和变异行为,使用3-5-3多项式插值法将轨迹拟合到机器人的关节空间中。将混合遗传粒子群算法、混沌粒子群算法和标准粒子群算法进行对比,获得最优插值时间后,在MATLAB软件中进行仿真,各个关节的位置、速度、加速度随时间变化的过程保持在理想的连续性区间内,实现了关节空间中的时间最优运动规划,最优时间由标准粒子群算法的5.0580 s减小到4.6330 s,机械臂轨迹规划时间缩短了8.4%,验证了所提算法在激光熔覆机器人修复矿用刮板的轨迹规划中的可行性。 展开更多
关键词 矿用刮板 时间最优 轨迹规划 粒子群算法 遗传算法 机械臂
在线阅读 下载PDF
云环境下基于DO-GAPSO的任务调度算法 被引量:5
17
作者 孙敏 陈中雄 卢伟荣 《计算机科学》 CSCD 北大核心 2018年第B06期300-303,共4页
为了找到合理的云计算任务调度方案,仅从单一方面来优化调度策略已不能满足用户需求,但从多个方面优化调度策略又面临着权重分配问题。针对上述问题,从任务完成时间、任务完成成本、服务质量3个方面考虑,提出一种基于遗传与粒子群算法... 为了找到合理的云计算任务调度方案,仅从单一方面来优化调度策略已不能满足用户需求,但从多个方面优化调度策略又面临着权重分配问题。针对上述问题,从任务完成时间、任务完成成本、服务质量3个方面考虑,提出一种基于遗传与粒子群算法相融合的动态目标任务调度算法,在算法的适应度评价函数建模中引入线性权重动态分配策略。通过CloudSim平台进行云环境仿真实验,并将此算法与经典的双适应遗传算法(DFGA)、离散粒子群优化算法(DPSO)进行比较。实验结果表明,在相同的设置条件下,该算法在执行效率、寻优能力等方面优于其他两个算法,是一种云计算环境下有效的任务调度算法。 展开更多
关键词 云计算 任务调度 惯性权重 粒子群优化 遗传算法
在线阅读 下载PDF
基于GA-PSO的矿井通风网络优化方法研究 被引量:1
18
作者 王伟峰 白玉 +3 位作者 杨泽 李寒冰 陈怡帆 马岩松 《矿业安全与环保》 北大核心 2025年第2期24-29,共6页
针对煤矿复杂通风网络解算效率低与动态适应性不足的问题,提出一种遗传-粒子群混合算法(GA-PSO)。以矿井通风基本定律和矿用风机特性曲线为约束,建立以最小化通风功耗为目标的优化模型。为克服GA收敛速度慢的缺陷,选取随机竞争与算术交... 针对煤矿复杂通风网络解算效率低与动态适应性不足的问题,提出一种遗传-粒子群混合算法(GA-PSO)。以矿井通风基本定律和矿用风机特性曲线为约束,建立以最小化通风功耗为目标的优化模型。为克服GA收敛速度慢的缺陷,选取随机竞争与算术交叉-高斯变异算子组合提升种群多样性,增强全局收敛性并避免局部最优;针对PSO的早熟现象,设计潜力粒子替换与冗余粒子重启的淘汰策略,并提出基于适应值标准差的自适应惯性权重调节策略,提高算法全局搜索能力;结合学习因子的动态协同机制,实现全局探索与局部优化的动态平衡。结果表明,优化后的通风机功耗降低16.86%,证明GA-PSO在收敛速度和优化能力方面显著优于单独应用GA或PSO,有效克服了传统方法在复杂风网中的早熟收敛与维度灾难问题,为矿井通风系统节能与安全调控提供理论支撑。 展开更多
关键词 煤矿通风 遗传算法 粒子群优化算法 网络解算优化 风机功耗
在线阅读 下载PDF
改进混合算法优化门式起重机控制问题 被引量:1
19
作者 兰朋 郭进鹏 +1 位作者 刘曼兰 任海涛 《重庆理工大学学报(自然科学)》 北大核心 2025年第3期101-109,共9页
随着工地、厂房、码头等物流场所智能化需求的提升,作为主要起重搬运设备的起重机械已向着自动化、智能化方向飞速发展,其中,吊装作业的自动、快速、精确就位是智能起重机的关键技术难点。针对传统门式起重机作业时定位不精确及吊重摆... 随着工地、厂房、码头等物流场所智能化需求的提升,作为主要起重搬运设备的起重机械已向着自动化、智能化方向飞速发展,其中,吊装作业的自动、快速、精确就位是智能起重机的关键技术难点。针对传统门式起重机作业时定位不精确及吊重摆角消除过慢的问题,提出了一种基于改进遗传算法(improved genetic algorithm,IGA)与改进粒子群算法(improved particle swarm optimization,IPSO)混合优化的模糊PID(fuzzy PID,FPID)控制方法。利用拉格朗日方程建立了门机的动力学模型,对模糊PID控制器的量化因子及比例因子使用混合算法优化,并借助Matlab-Simulink平台进行了对比分析及鲁棒性分析。结果表明:模糊PID控制器在经过所设计的算法优化后能够实现门机更加精确的定位及更加快速的消摆,鲁棒性也得到了提升。 展开更多
关键词 遗传算法 粒子群算法 门式起重机 模糊PID 定位防摆控制
在线阅读 下载PDF
基于生成对抗网络(GANs)的隧道施工通风研究与应用
20
作者 郑旭廷 孙三祥 崔善坤 《隧道建设(中英文)》 北大核心 2025年第S1期330-339,共10页
为解决高海拔隧道施工过程中存在的通风效率低、能耗高等问题,开发一种基于生成对抗网络(GANs)的高海拔隧道施工通风数据模拟与优化系统。首先,采用GANs技术生成高精度的施工环境数据,替代传统的CFD仿真方法,通过学习施工环境中多维数... 为解决高海拔隧道施工过程中存在的通风效率低、能耗高等问题,开发一种基于生成对抗网络(GANs)的高海拔隧道施工通风数据模拟与优化系统。首先,采用GANs技术生成高精度的施工环境数据,替代传统的CFD仿真方法,通过学习施工环境中多维数据的分布特征,实时生成模拟数据。随后,结合遗传算法(GA)和粒子群优化(PSO)算法,优化通风系统的参数配置,提高系统的响应速度和稳定性。试验结果表明:1)基于GANs的通风优化策略在提高通风效率和降低能耗方面具有显著优势,通风效率提升了12%,能耗降低了8%。2)GANs生成的数据与实际测量数据的误差小于15%,具有较高的准确性和适应性。3)通过在多种不同的施工环境下进行试验,验证了该优化策略在复杂条件下的有效性和鲁棒性,尤其在极端条件下表现尤为突出。4)通过引入生成对抗网络技术,显著提高了隧道施工通风系统的优化效率,降低了施工过程中存在的安全隐患,为高海拔隧道施工的智能化管理提供了新的技术支持。 展开更多
关键词 隧道施工通风 生成对抗网络 通风优化 遗传算法 粒子群优化 数据模拟
在线阅读 下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部