期刊文献+
共找到27,624篇文章
< 1 2 250 >
每页显示 20 50 100
An improved genetic algorithm for causal discovery
1
作者 MAO Tengjiao BU Xianjin +2 位作者 CAI Chunxiao LU Yue DU Jing 《Journal of Systems Engineering and Electronics》 2025年第3期768-777,共10页
The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to... The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm. 展开更多
关键词 genetic algorithm(GA) causal discovery convergence rate fitness function mutation operator
在线阅读 下载PDF
Establishment of a field visualization detection method for multiplex recombinase polymerase amplification combined with CRISPR/Cas12a in genetically modified crops
2
作者 YAN Jingying NI Liang +2 位作者 SHEN Xingyu LÜ Bingtao LI Yu 《浙江大学学报(农业与生命科学版)》 北大核心 2025年第3期391-401,共11页
With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a c... With the approval of more and more genetically modified(GM)crops in our country,GM safety management has become more important.Transgenic detection is a major approach for transgenic safety management.Nevertheless,a convenient and visual technique with low equipment requirements and high sensitivity for the field detection of GM plants is still lacking.On the basis of the existing recombinase polymerase amplification(RPA)technique,we developed a multiplex RPA(multi-RPA)method that can simultaneously detect three transgenic elements,including the cauliflower mosaic virus 35S gene(CaMV35S)promoter,neomycin phosphotransferaseⅡgene(NptⅡ)and hygromycin B phosphotransferase gene(Hyg),thus improving the detection rate.Moreover,we coupled this multi-RPA technique with the CRISPR/Cas12a reporter system,which enabled the detection results to be clearly observed by naked eyes under ultraviolet(UV)light(254 nm;which could be achieved by a portable UV flashlight),therefore establishing a multi-RPA visual detection technique.Compared with the traditional test strip detection method,this multi-RPA-CRISPR/Cas12a technique has the higher specificity,higher sensitivity,wider application range and lower cost.Compared with other polymerase chain reaction(PCR)techniques,it also has the advantages of low equipment requirements and visualization,making it a potentially feasible method for the field detection of GM plants. 展开更多
关键词 genetically modified crop recombinase polymerase amplification CRISPR/cas12a field detection
在线阅读 下载PDF
Topological optimization of ballistic protective structures through genetic algorithms in a vulnerability-driven environment
3
作者 Salvatore Annunziata Luca Lomazzi +1 位作者 Marco Giglio Andrea Manes 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期125-137,共13页
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne... Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from. 展开更多
关键词 Topological optimization Protective structure genetic algorithm SURVIVABILITY VULNERABILITY
在线阅读 下载PDF
Low side lobe pattern synthesis using projection method with genetic algorithm for truncated cone conformal phased arrays 被引量:8
4
作者 Guoqi Zeng Siyin Li +1 位作者 Yan Zhang Shanwei L 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第4期554-559,共6页
A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone con... A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible. 展开更多
关键词 conformal phased array low side lobe pattern synthe-sis projection method genetic algorithm optimization.
在线阅读 下载PDF
Search for circular and noncircular critical slip surfaces in slope stability analysis by hybrid genetic algorithm 被引量:8
5
作者 朱剑锋 陈昌富 《Journal of Central South University》 SCIE EI CAS 2014年第1期387-397,共11页
A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and... A local improvement procedure based on tabu search(TS) was incorporated into a basic genetic algorithm(GA) and a global optimal algorithm,i.e.,hybrid genetic algorithm(HGA) approach was used to search the circular and noncircular slip surfaces associated with their minimum safety factors.The slope safety factors of circular and noncircular critical slip surfaces were calculated by the simplified Bishop method and an improved Morgenstern-Price method which can be conveniently programmed,respectively.Comparisons with other methods were made which indicate the high efficiency and accuracy of the HGA approach.The HGA approach was used to calculate one case example and the results demonstrated its applicability to practical engineering. 展开更多
关键词 SLOPE STABILITY genetic algorithm tabu search algorithm safety factor
在线阅读 下载PDF
A novel adaptive mutative scale optimization algorithm based on chaos genetic method and its optimization efficiency evaluation 被引量:5
6
作者 王禾军 鄂加强 邓飞其 《Journal of Central South University》 SCIE EI CAS 2012年第9期2554-2560,共7页
By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite co... By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite collapses within the finite region of [-1,1].Some measures in the optimization algorithm,such as adjusting the searching space of optimized variables continuously by using adaptive mutative scale method and making the most circle time as its control guideline,were taken to ensure its speediness and veracity in seeking the optimization process.The calculation examples about three testing functions reveal that AMSCGA has both high searching speed and high precision.Furthermore,the average truncated generations,the distribution entropy of truncated generations and the ratio of average inertia generations were used to evaluate the optimization efficiency of AMSCGA quantificationally.It is shown that the optimization efficiency of AMSCGA is higher than that of genetic algorithm. 展开更多
关键词 chaos genetic optimization algorithm CHAOS genetic algorithm optimization efficiency
在线阅读 下载PDF
Global Convergence Analysis of Non-Crossover Genetic Algorithm and Its Application to Optimization 被引量:3
7
作者 Dai Xiaoming, Sun Rang, Zou Runmin2, Xu Chao & Shao Huihe(. Dept. of Auto., School of Electric and Information, Shanghai Jiaotong University, Shanghai 200030, P. R. China College of Information Science and Enginereing, Central South University, Changsha 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第2期84-91,共8页
Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selecti... Selection, crossover, and mutation are three main operators of the canonical genetic algorithm (CGA). This paper presents a new approach to the genetic algorithm. This new approach applies only to mutation and selection operators. The paper proves that the search process of the non-crossover genetic algorithm (NCGA) is an ergodic homogeneous Markov chain. The proof of its convergence to global optimum is presented. Some nonlinear multi-modal optimization problems are applied to test the efficacy of the NCGA. NP-hard traveling salesman problem (TSP) is cited here as the benchmark problem to test the efficiency of the algorithm. The simulation result shows that NCGA achieves much faster convergence speed than CGA in terms of CPU time. The convergence speed per epoch of NCGA is also faster than that of CGA. 展开更多
关键词 caNONIcaL genetic algorithm Ergodic homogeneous Markov chain Global convergence.
在线阅读 下载PDF
Memristive network-based genetic algorithm and its application to image edge detection 被引量:7
8
作者 YU Yongbin YANG Chenyu +3 位作者 DENG Quanxin NYIMA Tashi LIANG Shouyi ZHOU Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第5期1062-1070,共9页
This paper proposes a mem-computing model of memristive network-based genetic algorithm(MNGA)by building up the relationship between the memristive network(MN)and the genetic algorithm(GA),and a new edge detection alg... This paper proposes a mem-computing model of memristive network-based genetic algorithm(MNGA)by building up the relationship between the memristive network(MN)and the genetic algorithm(GA),and a new edge detection algorithm where image pixels are defined as individuals of population.First,the computing model of MNGA is designed to perform mem-computing,which brings new possibility of the hardware implementation of GA.Secondly,MNGA-based edge detection integrating image filter and GA operator deployed by MN is proposed.Finally,simulation results demonstrate that the figure of merit(FoM)of our model is better than the latest memristor-based swarm intelligence.In summary,a new way is found to build proper matching of memristor to GA and aid image edge detection. 展开更多
关键词 memristive network(MN) genetic algorithm(GA) edge detection mem-computing
在线阅读 下载PDF
Worst-case tolerance analysis on array antenna based on chaos-genetic algorithm 被引量:2
9
作者 Hao Yuan Dan Songt +1 位作者 Qiangfeng Zhou Huaping Xu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期824-830,共7页
This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic ... This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic algorithm (CGA) is proposed. The proposed method utilizes chaos to optimize initial population for the genetic algorithm (GA) and introduces chaotic disturbance into the genetic mutation, thereby improving the ability of the GA to search for the global optimum. Numerical simulations demonstrate that the accuracy and stability of the worst-case analysis of the proposed approach are superior to the GA. And the proposed algorithm can be used easily for the error tolerant design of antenna arrays. 展开更多
关键词 genetic algorithm (GA) array antenna tolerance anal-ysis chaos disturbance logistic map
在线阅读 下载PDF
A Novel Training Algorithm of Genetic Neural Networks and Its Application to Classification 被引量:2
10
作者 Xiao, J. Wu, J. Yang, S. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第3期76-84,共9页
First of all, this paper discusses the drawbacks of multilayer perceptron (MLP), which is trained by the traditional back propagation (BP) algorithm and used in a special classification problem. A new training algorit... First of all, this paper discusses the drawbacks of multilayer perceptron (MLP), which is trained by the traditional back propagation (BP) algorithm and used in a special classification problem. A new training algorithm for neural networks based on genetic algorithm and BP algorithm is developed. The difference between the new training algorithm and BP algorithm in the ability of nonlinear approaching is expressed through an example, and the application foreground is illustrated by an example. 展开更多
关键词 Backpropagation Computer simulation genetic algorithms Mathematical models Nonlinear control systems Problem solving
在线阅读 下载PDF
Forecasting and Evaluating the Efficiency of Test Generation Algorithms by Genetic Algorithm 被引量:1
11
作者 Shiyi Xu and Wei Cen School of Computers Shanghai University, Shanghai, China 200072 《湖南大学学报(自然科学版)》 EI CAS CSCD 2000年第S2期86-94,共9页
To generate a test set for a given circuit (including both combinational and sequential circuits), choice of an algorithm within a number of existing test generation algorithms to apply is bound to vary from circuit t... To generate a test set for a given circuit (including both combinational and sequential circuits), choice of an algorithm within a number of existing test generation algorithms to apply is bound to vary from circuit to circuit. In this paper, the genetic algorithms are used to construct the models of existing test generation algorithms in making such choice more easily. Therefore, we may forecast the testability parameters of a circuit before using the real test generation algorithm. The results also can be used to evaluate the efficiency of the existing test generation algorithms. Experimental results are given to convince the readers of the truth and the usefulness of this approach. 展开更多
关键词 TESTABILITY genetic algorithm Forecasting EVALUATING Test Generation.
在线阅读 下载PDF
Forecasting increasing rate of power consumption based on immune genetic algorithm combined with neural network 被引量:1
12
作者 杨淑霞 《Journal of Central South University》 SCIE EI CAS 2008年第S2期327-330,共4页
Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune... Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune genetic algorithm was applied to optimizing the weight from input layer to hidden layer, from hidden layer to output layer, and the threshold value of neuron nodes in hidden and output layers. Finally, training the related data of the increasing rate of power consumption from 1980 to 2000 in China, a nonlinear network model between the increasing rate of power consumption and influencing factors was obtained. The model was adopted to forecasting the increasing rate of power consumption from 2001 to 2005, and the average absolute error ratio of forecasting results is 13.521 8%. Compared with the ordinary neural network optimized by genetic algorithm, the results show that this method has better forecasting accuracy and stability for forecasting the increasing rate of power consumption. 展开更多
关键词 IMMUNE genetic algorithm neural network power CONSUMPTION INCREASING RATE FOREcaST
在线阅读 下载PDF
Discrete logistics network design model under interval hierarchical OD demand based on interval genetic algorithm 被引量:2
13
作者 李利华 符卓 +1 位作者 周和平 胡正东 《Journal of Central South University》 SCIE EI CAS 2013年第9期2625-2634,共10页
Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of t... Aimed at the uncertain characteristics of discrete logistics network design,an interval hierarchical triangular uncertain OD demand model based on interval demand and network flow is presented.Under consideration of the system profit,the uncertain demand of logistics network is measured by interval variables and interval parameters,and an interval planning model of discrete logistics network is established.The risk coefficient and maximum constrained deviation are defined to realize the certain transformation of the model.By integrating interval algorithm and genetic algorithm,an interval hierarchical optimal genetic algorithm is proposed to solve the model.It is shown by a tested example that in the same scenario condition an interval solution[3275.3,3 603.7]can be obtained by the model and algorithm which is obviously better than the single precise optimal solution by stochastic or fuzzy algorithm,so it can be reflected that the model and algorithm have more stronger operability and the solution result has superiority to scenario decision. 展开更多
关键词 uncertainty interval planning hierarchical OD logistics network design genetic algorithm
在线阅读 下载PDF
Family genetic algorithms based on gene exchange and its application 被引量:1
14
作者 Li Jianhua Ding Xiangqian +1 位作者 Wang Sun'an Yu Qing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期864-869,共6页
Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not... Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not as good as it was expected to be. Criticism of this algorithm includes the slow speed and premature result during convergence procedure. In order to improve the performance, the population size and individuals' space is emphatically described. The influence of individuals' space and population size on the operators is analyzed. And a novel family genetic algorithm (FGA) is put forward based on this analysis. In this novel algorithm, the optimum solution families closed to quality individuals is constructed, which is exchanged found by a search in the world space. Search will be done in this microspace. The family that can search better genes in a limited period of time would win a new life. At the same time, the best gene of this micro space with the basic population in the world space is exchanged. Finally, the FGA is applied to the function optimization and image matching through several experiments. The results show that the FGA possessed high performance. 展开更多
关键词 genetic algorithms function optimization image matching population size individual space.
在线阅读 下载PDF
Identification and analysis based on genetic algorithm for proton exchange membrane fuel cell stack 被引量:3
15
作者 李曦 曹广益 +1 位作者 朱新坚 卫东 《Journal of Central South University of Technology》 EI 2006年第4期428-431,共4页
The temperature of proton exchange membrane fuel cell stack and the stoichiometric oxygen in cathode have relationship with the performance and life span of fuel cells closely. The thermal coefficients were taken as i... The temperature of proton exchange membrane fuel cell stack and the stoichiometric oxygen in cathode have relationship with the performance and life span of fuel cells closely. The thermal coefficients were taken as important factors affecting the temperature distribution of fuel cells and components. According to the experimental analysis, when the stoichiometric oxygen in cathode is greater than or equal to 1.8, the stack voltage loss is the least. A novel genetic algorithm was developed to identify and optimize the variables in dynamic thermal model of proton exchange membrane fuel cell stack, making the outputs of temperature model approximate to the actual temperature, and ensuring that the maximal error is less than 1 ℃. At the same time, the optimum region of stoichiometric oxygen is obtained, which is in the range of 1.8-2.2 and accords with the experimental analysis results. The simulation and experimental results show the effectiveness of the proposed algorithm. 展开更多
关键词 proton exchange membrane fuel cell genetic algorithm TEMPERATURE thermal coefficient stoichiometric oxygen
在线阅读 下载PDF
Chaotic migration-based pseudo parallel genetic algorithm and its application in inventory optimization 被引量:1
16
作者 ChenXiaofang GuiWeihua WangYalin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期411-417,共7页
Considering premature convergence in the searching process of genetic algorithm, a chaotic migration-based pseudo parallel genetic algorithm (CMPPGA) is proposed, which applies the idea of isolated evolution and infor... Considering premature convergence in the searching process of genetic algorithm, a chaotic migration-based pseudo parallel genetic algorithm (CMPPGA) is proposed, which applies the idea of isolated evolution and information exchanging in distributed Parallel Genetic Algorithm by serial program structure to solve optimization problem of low real-time demand. In this algorithm, asynchronic migration of individuals during parallel evolution is guided by a chaotic migration sequence. Information exchanging among sub-populations is ensured to be efficient and sufficient due to that the sequence is ergodic and stochastic. Simulation study of CMPPGA shows its strong global search ability, superiority to standard genetic algorithm and high immunity against premature convergence. According to the practice of raw material supply, an inventory programming model is set up and solved by CMPPGA with satisfactory results returned. 展开更多
关键词 parallel genetic algorithm CHAOS premature convergence inventory optimization.
在线阅读 下载PDF
Elitism-based immune genetic algorithm and its application to optimization of complex multi-modal functions 被引量:4
17
作者 谭冠政 周代明 +1 位作者 江斌 DIOUBATE Mamady I 《Journal of Central South University of Technology》 EI 2008年第6期845-852,共8页
A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody s... A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism. 展开更多
关键词 immune genetic algorithm multi-modal function optimization evolutionary computation elitist selection elitist crossover
在线阅读 下载PDF
Control parameter optimal tuning method based on annealing-genetic algorithm for complex electromechanical system 被引量:1
18
作者 贺建军 喻寿益 钟掘 《Journal of Central South University of Technology》 2003年第4期359-363,共5页
A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that... A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings.The difference from GA is that AGA takes objective function as adaptability function directly,so it cuts down some unnecessary time expense because of float-point calculation of function conversion.The difference from SAA is that AGA need not execute a very long Markov chain iteration at each point of temperature, so it speeds up the convergence of solution and makes no assumption on the search space,so it is simple and easy to be implemented.It can be applied to a wide class of problems.The optimizing principle and the implementing steps of AGA were expounded. The example of the parameter optimization of a typical complex electromechanical system named temper mill shows that AGA is effective and superior to the conventional GA and SAA.The control system of temper mill optimized by AGA has the optimal performance in the adjustable ranges of its parameters. 展开更多
关键词 genetic algorithm SIMULATED ANNEALING algorithm annealing-genetic algorithm complex electro-mechanical system PARAMETER tuning OPTIMAL control
在线阅读 下载PDF
Classification of hyperspectral remote sensing images based on simulated annealing genetic algorithm and multiple instance learning 被引量:3
19
作者 高红民 周惠 +1 位作者 徐立中 石爱业 《Journal of Central South University》 SCIE EI CAS 2014年第1期262-271,共10页
A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decom... A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algonthrn and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13% at small training samples and the weaknesses of the conventional methods are overcome. 展开更多
关键词 hyperspectral remote sensing images simulated annealing genetic algorithm support vector machine band selection multiple instance learning
在线阅读 下载PDF
Using Genetic Algorithms to Improve the Search of the Weight Space in Cascade-Correlation Neural Network 被引量:1
20
作者 E.A.Mayer, K. J. Cios, L. Berke & A. Vary(University of Toledo, Toledo, OH 43606, U. S. A.)(NASA Lewis Research Center, Cleveland, OH) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第2期9-21,共13页
In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a ... In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys. 展开更多
关键词 genetic algorithm cascade correlation Weight space search Neural network.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部