期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
基于聚类集成的地下空间地质环境质量三维评价 被引量:1
1
作者 熊芸莹 李晓晖 +3 位作者 袁峰 卢志堂 吴少元 窦帆帆 《合肥工业大学学报(自然科学版)》 北大核心 2025年第1期78-84,91,共8页
城市地下空间开发利用是解决城市土地资源紧缺的重要手段,地下空间地质环境质量评价是地下空间合理安全利用和降低开发风险的前提和保障。为了降低评价过程中的主观性和评价结果中多种评价指标交叉交融的不确定性,文章基于三维地质模型... 城市地下空间开发利用是解决城市土地资源紧缺的重要手段,地下空间地质环境质量评价是地下空间合理安全利用和降低开发风险的前提和保障。为了降低评价过程中的主观性和评价结果中多种评价指标交叉交融的不确定性,文章基于三维地质模型,采用多种聚类模型的聚类集成算法对地下空间地质环境质量进行评价。利用K-means、高斯混合模型、自组织神经网络等聚类模型计算结果,结合重标记法的聚类集成算法实现地质环境质量评价。以厦门市某区为例,基于三维评价指标信息,利用上述分析方法进行评价,并与层次分析法结合多级指数叠加法评价结果进行对比分析。结果表明,基于聚类集成的评价方法能够有效应用于地下空间地质环境质量三维分类及评价研究,相关评价结果可以更客观地为地下空间的安全合理开发提供支持和保障,更好地服务于城市地下空间的建设规划和可持续发展。 展开更多
关键词 地下空间 自组织神经网络 K-MEANS算法 高斯混合模型 聚类集成 三维
在线阅读 下载PDF
基于高斯分布的自适应密度峰值聚类算法
2
作者 李启文 王治和 +1 位作者 杜辉 鲁德鹏 《计算机工程》 北大核心 2025年第4期137-148,共12页
密度峰值聚类(DPC)算法可以发现任意形状的簇,对噪声具有鲁棒性,因此被广泛应用于各个领域。但DPC算法需要人工选取聚类中心,对于密度不均匀型数据集表现较差。为此,提出一种基于高斯分布的自适应密度峰值聚类算法。首先,计算局部密度... 密度峰值聚类(DPC)算法可以发现任意形状的簇,对噪声具有鲁棒性,因此被广泛应用于各个领域。但DPC算法需要人工选取聚类中心,对于密度不均匀型数据集表现较差。为此,提出一种基于高斯分布的自适应密度峰值聚类算法。首先,计算局部密度和相对距离的乘积θ_(i),通过Z-score标准化方法,将θ_(i)映射到符合高斯分布的二维空间中,利用高斯分布的标准偏差来自适应选取聚类中心,得到聚类中心集合;其次,将其余数据点分配到离其最近的聚类中心所在的簇中,得到初步划分结果;最后,设计缝合因子模型,计算簇间缝合系数,当缝合系数大于阈值时合并初步划分结果中最相似簇并更新相似度矩阵,直至完成合并得到最终结果。在人工数据集和真实数据集上的实验结果表明,与DBSCAN算法、DPC算法和ICKDC算法对比,所提算法的聚类准确度更高,聚类性能更佳。 展开更多
关键词 密度峰值聚类算法 高斯分布 Z-score标准化 缝合因子 簇间相似度
在线阅读 下载PDF
改进RHGSO-FC算法的RGB-D图像GMM聚类分割
3
作者 郭培岩 范九伦 刘恒 《计算机工程与应用》 北大核心 2025年第2期234-246,共13页
随着低成本深度图像传感器的引入,在RGB-D图像中进行可靠的图像分割是计算机视觉的一个目标,而如何对杂乱的场景进行图像分割具有挑战性。基于随机亨利气体溶解度优化算法的模糊聚类(RHGSO-FC),提出一种新的RGB-D图像分割方法。对亨利... 随着低成本深度图像传感器的引入,在RGB-D图像中进行可靠的图像分割是计算机视觉的一个目标,而如何对杂乱的场景进行图像分割具有挑战性。基于随机亨利气体溶解度优化算法的模糊聚类(RHGSO-FC),提出一种新的RGB-D图像分割方法。对亨利气体溶解度优化算法(HGSO)进行改进,提出改进的亨利气体溶解度优化算法(LRHGSO),并利用基于改进亨利气体溶解度优化算法的核模糊聚类(LRHGSO-KFC)生成初始化标签。将初始化标签传入到高斯混合(GMM)聚类中,得到多个聚类结果。最后对这些聚类结果通过聚集超像素方法进行分割合并,得到最终分割结果。实验数据集采用NYU depth V2室内图像,与现有的一些分割方法:阈值分割算法、硬C-均值、模糊C-均值、高斯混合聚类、核模糊聚类、模糊子空间聚类、混沌Kbest引力搜索算法和随机亨利气体溶解度优化算法进行比较,结果表明提出的RGB-D分割算法优于其他比较的算法。 展开更多
关键词 RGB-D图像分割 核模糊聚类 亨利气体溶解度优化算法 高斯混合模型 聚集超像素
在线阅读 下载PDF
一种快速、鲁棒的有限高斯混合模型聚类算法 被引量:15
4
作者 胡庆辉 丁立新 +1 位作者 陆玉靖 何进荣 《计算机科学》 CSCD 北大核心 2013年第8期191-195,共5页
有限混合模型聚类是一种基于概率模型的有效聚类方法。针对高斯混合模型的聚类算法,分别对模型的成分混合系数及样本所属成分的概率系数施加熵惩罚算子,实现对模型成分数的两级控制,快速消除无效成分,使算法能在很少的迭代次数内收敛到... 有限混合模型聚类是一种基于概率模型的有效聚类方法。针对高斯混合模型的聚类算法,分别对模型的成分混合系数及样本所属成分的概率系数施加熵惩罚算子,实现对模型成分数的两级控制,快速消除无效成分,使算法能在很少的迭代次数内收敛到确定解。传统算法对初始值(成分数目c需事先指定)的设置非常敏感,容易导致EM算法陷入局部最优解或收敛到解空间的边界,而文中的算法对初始值的设定没有特殊的要求,实验证明其具有很好的鲁棒性。 展开更多
关键词 高斯混合模型 聚类 信息熵 EM算法
在线阅读 下载PDF
一种基于高斯混合模型的无监督粗糙聚类方法 被引量:9
5
作者 何明 冯博琴 +1 位作者 马兆丰 傅向华 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2006年第2期256-259,322,共5页
针对数据统计分布的随机性和复杂性,从统计聚类的角度出发,采用高斯混合模型来描述整个数据的概率密度函数,提出了一种基于高斯混合模型的粗糙聚类分析方法.该方法首先利用粗糙集理论的不可区分关系性质以及生成的逻辑规则来设定EM算法... 针对数据统计分布的随机性和复杂性,从统计聚类的角度出发,采用高斯混合模型来描述整个数据的概率密度函数,提出了一种基于高斯混合模型的粗糙聚类分析方法.该方法首先利用粗糙集理论的不可区分关系性质以及生成的逻辑规则来设定EM算法的初始近似参数,然后通过Expectation-M axim ization(EM)算法估计各分量概率密度分布的最大似然参数集,最后通过密度分布概率大小来确定类别的归属.与传统的k-m eans聚类算法的试验结果比较表明,该方法是有效的,并且具有较高的聚类精度,用规则集来描述聚类的结果具有可解释性和合理性. 展开更多
关键词 高斯混合模型 粗糙集 EM算法 聚类
在线阅读 下载PDF
改进的模糊核聚类算法 被引量:5
6
作者 章森 朱美玲 侯光奎 《北京工业大学学报》 EI CAS CSCD 北大核心 2012年第9期1408-1411,共4页
将核学习方法的思想和改进的选择C-均值聚类算法相结合,提出了一种改进的模糊核聚类算法,使其能对非超球体、含有噪音和离群点及样本不均衡的数据进行有效的聚类.通过引入高斯核函数,原样本的特征被非线性变换到高维核空间,提高了聚类性... 将核学习方法的思想和改进的选择C-均值聚类算法相结合,提出了一种改进的模糊核聚类算法,使其能对非超球体、含有噪音和离群点及样本不均衡的数据进行有效的聚类.通过引入高斯核函数,原样本的特征被非线性变换到高维核空间,提高了聚类性能.实验结果表明,该改进算法具有有效性. 展开更多
关键词 模糊C-均值聚类 选择C-均值聚类算法 高斯核函数 特征空间
在线阅读 下载PDF
基于加权多宽度高斯核函数的聚类算法 被引量:2
7
作者 赵犁丰 王栋 《现代电子技术》 2011年第10期78-81,共4页
针对在支持向量聚类,当样本分布不均匀时,单宽度的高斯核限制了支持向量机泛化性能,影响了聚类效果的问题,提出一种基于加权多宽度高斯核函数的支持向量聚类算法。加权多宽度高斯核函数比单宽度的高斯核有更多的可调参数,通过多参数调节... 针对在支持向量聚类,当样本分布不均匀时,单宽度的高斯核限制了支持向量机泛化性能,影响了聚类效果的问题,提出一种基于加权多宽度高斯核函数的支持向量聚类算法。加权多宽度高斯核函数比单宽度的高斯核有更多的可调参数,通过多参数调节,可提高泛化能力,改善聚类效果。仿真实验表明,与单宽度的高斯核相比,加权多宽度高斯核可以有效聚类,从而证明了该算法的有效性。 展开更多
关键词 加权多宽度高斯核 聚类 SVC 高斯核
在线阅读 下载PDF
混合高斯参数估计的动态簇算法 被引量:1
8
作者 王平波 蔡志明 刘旺锁 《声学技术》 CSCD 北大核心 2007年第4期741-746,共6页
混合高斯概率密度模型可以很好地拟合非高斯样本的概率密度。在各高斯分量概率密度互不重叠的条件下,使用动态簇算法可以快速而精确地估计出混合高斯概率密度模型参数。这是一种基于最小均方差原则的递推算法,在正向推导出各种可能的簇... 混合高斯概率密度模型可以很好地拟合非高斯样本的概率密度。在各高斯分量概率密度互不重叠的条件下,使用动态簇算法可以快速而精确地估计出混合高斯概率密度模型参数。这是一种基于最小均方差原则的递推算法,在正向推导出各种可能的簇边界后,再根据确定的最末边界值逆向推定各前导簇边界,从而得到混合高斯概率密度模型参数估计值。描述模型及参数估计问题之后,动态簇算法被推导出来。然后深入探讨了该算法的实质及适用条件。最后结合数值仿真实例,分析了动态簇算法的估计性能。 展开更多
关键词 混合高斯 累积方差 动态簇算法
在线阅读 下载PDF
基于小型无人机航拍图像的道路检测方法 被引量:15
9
作者 董培 石繁槐 《计算机工程》 CAS CSCD 北大核心 2015年第12期36-39,共4页
为提高无人机道路检测的实时性和鲁棒性,提出一种基于改进graphcut算法的道路检测方法。利用Orchard-Boumand聚类算法聚类道路和非道路像素点,通过高斯混合模型对这2类像素点建模,构造Gibbs能量惩罚函数中的区域项函数。针对航拍图像各... 为提高无人机道路检测的实时性和鲁棒性,提出一种基于改进graphcut算法的道路检测方法。利用Orchard-Boumand聚类算法聚类道路和非道路像素点,通过高斯混合模型对这2类像素点建模,构造Gibbs能量惩罚函数中的区域项函数。针对航拍图像各个区域具有不同对比度的特点,设计Gibbs能量惩罚函数中的光滑项函数,将单一的图像全局对比度矩阵替换为局部对比度矩阵。通过Gibbs能量惩罚函数构造有权重的图,运用maxflow算法进行分割,检测出道路区域。实验结果表明,该方法在不同类型道路下都能保持较好检测性能,与现有的道路检测方法相比,实时性好,错误率低。 展开更多
关键词 小型无人机航拍图像 道路检测 graphcut算法 Orchard-Boumand聚类算法 高斯混合模型 局部对比度矩阵
在线阅读 下载PDF
基于类内类间距离量级平衡的FCM聚类算法设计 被引量:4
10
作者 江文奇 牟华伟 《运筹与管理》 CSSCI CSCD 北大核心 2022年第8期122-128,共7页
类内距离和类间距离数值量级差异性导致两类距离无法直接融合,进而影响了FCM聚类模型设计。首先,本文全面回顾了经典和改进型的FCM聚类模型,构建了类内距离和类间距离迹的关系模型,分别从类内类间距离的变化不一致性和量级差异性两个方... 类内距离和类间距离数值量级差异性导致两类距离无法直接融合,进而影响了FCM聚类模型设计。首先,本文全面回顾了经典和改进型的FCM聚类模型,构建了类内距离和类间距离迹的关系模型,分别从类内类间距离的变化不一致性和量级差异性两个方面分析了现有FCM聚类模型的不足;其次,运用高斯核距离替代传统的欧式距离来表征类内类间距离,基于最小化类内紧凑度与类间分离度差的思想,设计了类内类间距离平衡方法,提出了一种改进的FCM聚类目标函数与算法;最后,运用算例说明了本方法的有效性和优越性。 展开更多
关键词 FCM 聚类分析 高斯核
在线阅读 下载PDF
基于聚类分析的网络流量高斯混合模型 被引量:2
11
作者 程华 房一泉 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期255-260,共6页
基于聚类算法对数据对象多个属性综合聚类的特点,研究网络流量的GMM模型及其在数据流尺度上的Log-normal分布。用EM算法研究了具有交互特征的网络流量的分类;通过与K-means算法比较,讨论了EM算法在流量聚类中的适用性;通过平衡和不平衡... 基于聚类算法对数据对象多个属性综合聚类的特点,研究网络流量的GMM模型及其在数据流尺度上的Log-normal分布。用EM算法研究了具有交互特征的网络流量的分类;通过与K-means算法比较,讨论了EM算法在流量聚类中的适用性;通过平衡和不平衡流量的聚类分析,研究了不同类型流量GMM建模的有效性。研究流量的幂律关系及其在不同尺度间的传递性,用户行为和应用程序特征通过传输层控制协议分解传递到IP层后,在数据包尺度上表现出分形和自相似性,在数据流尺度上表现出Log-normal分布。 展开更多
关键词 高斯混合模型 EM算法 聚类 Log-normal分布 幂律关系
在线阅读 下载PDF
基于自适应权重的模糊C-均值聚类算法 被引量:8
12
作者 任丽娜 秦永彬 许道云 《计算机应用研究》 CSCD 北大核心 2012年第8期2849-2851,共3页
针对模糊C-均值聚类算法过度依赖初始聚类中心的选取,从而易受孤立点和样本分布不均衡的影响而陷入局部最优状态的不足,提出一种基于自适应权重的模糊C-均值聚类算法。该算法采用高斯距离比例表示权重,在每一次迭代过程中,根据当前数据... 针对模糊C-均值聚类算法过度依赖初始聚类中心的选取,从而易受孤立点和样本分布不均衡的影响而陷入局部最优状态的不足,提出一种基于自适应权重的模糊C-均值聚类算法。该算法采用高斯距离比例表示权重,在每一次迭代过程中,根据当前数据的聚类划分情况,动态计算每个样本对于类的权重,降低了算法对初始聚类中心的依赖,减弱了孤立点和样本分布不均衡的影响。实验结果表明,该算法是一种较优的聚类算法,具有更好的健壮性和聚类效果。 展开更多
关键词 模糊C-均值聚类算法 自适应权重 高斯距离 隶属矩阵
在线阅读 下载PDF
基于局部线性重构与高斯核映射的聚类研究 被引量:3
13
作者 马元元 郝海涛 杨延娇 《控制工程》 CSCD 北大核心 2017年第7期1493-1500,共8页
针对现有的基于约束的半监督聚类算法获得的聚类结果质量不足的问题,提出一种基于高斯核映射与局部线性重构的主动学习聚类算法。首先利用高斯核映射与局部线性嵌入进行流行学习,将对局部线性重构重要性过低以及非平坦区域的样本作为不... 针对现有的基于约束的半监督聚类算法获得的聚类结果质量不足的问题,提出一种基于高斯核映射与局部线性重构的主动学习聚类算法。首先利用高斯核映射与局部线性嵌入进行流行学习,将对局部线性重构重要性过低以及非平坦区域的样本作为不重要的样本;然后,为查询选择设立了1个考虑样本所需查询数量的新判断条件;最终,建立must-link并将平坦区域的信息传递至半监督聚类算法。实验结果证明,对于小规模数据与大规模数据,该算法学习的成对约束均可获得较好的聚类结果。 展开更多
关键词 高斯核映射 局部线性重构 聚类算法 成对约束 查询选择
在线阅读 下载PDF
有色非高斯数据PSD/PDF建模的MLE/DC方法
14
作者 王平波 蔡志明 沈德刚 《系统仿真学报》 CAS CSCD 北大核心 2006年第11期3196-3199,共4页
AR模型、混合高斯模型分别可以很好地拟合样本的功率谱和概率密度。AR模型参数估计可以使用最大似然估计法(MLE);而在各高斯分量概率密度互不重叠的条件下,使用动态簇算法(DC)则可快速而精确地估计出混合高斯模型参数。使用MLE/DC参数... AR模型、混合高斯模型分别可以很好地拟合样本的功率谱和概率密度。AR模型参数估计可以使用最大似然估计法(MLE);而在各高斯分量概率密度互不重叠的条件下,使用动态簇算法(DC)则可快速而精确地估计出混合高斯模型参数。使用MLE/DC参数估计方法,并在两种方法间建立一定耦合,即可对有色非高斯数据进行准确的功率谱和概率密度建模,进而实现数据的预白与高斯化。 展开更多
关键词 混合高斯 最大似然估计 动态簇算法 预白 高斯化
在线阅读 下载PDF
基于流相关性的网络流量分类 被引量:1
15
作者 赵英 陈骏君 《计算机工程与应用》 CSCD 北大核心 2015年第21期25-29,共5页
网络流量分类技术对网络安全管理起着非常重要的作用。随着网络和信息技术的发展,传统的基于端口号和深度包检测分类方法的局限性愈发明显,不能对现有的流量进行准确分类。提出一种基于流相关性的半监督网络流量分类算法,并使用MDL-CON... 网络流量分类技术对网络安全管理起着非常重要的作用。随着网络和信息技术的发展,传统的基于端口号和深度包检测分类方法的局限性愈发明显,不能对现有的流量进行准确分类。提出一种基于流相关性的半监督网络流量分类算法,并使用MDL-CON高斯混合模型作为聚类模型,通过聚类过程中利用流之间的相关性提高模型的准确度。采用MDL准则解决了高斯混合模型需要人为预先设定类簇数目和高度依赖于初始值的问题。实验结果表明,利用该方法来处理流量分类问题可取得理想的分类效果。 展开更多
关键词 流量分类 聚类算法 高斯混合模型 最小描述长度(MDL)准则
在线阅读 下载PDF
考虑动态需求的生鲜商品物流配送优化方法研究 被引量:4
16
作者 王勇 罗双 +1 位作者 苟梦圆 罗思妤 《包装工程》 CAS 北大核心 2024年第7期148-158,共11页
目的针对生鲜商品配送过程中客户需求的变化,协调静态与动态客户需求之间的关系,合理规划路径,并降低物流总成本。方法首先考虑客户生鲜需求的多样化温控区间、随机订单请求时间及动态需求量等因素,构建物流总成本最小化的整数规划模型... 目的针对生鲜商品配送过程中客户需求的变化,协调静态与动态客户需求之间的关系,合理规划路径,并降低物流总成本。方法首先考虑客户生鲜需求的多样化温控区间、随机订单请求时间及动态需求量等因素,构建物流总成本最小化的整数规划模型。然后,设计基于高斯混合聚类的改进蚁群算法求解该模型,并提出动态需求处理策略,用于路径的再优化。其次,通过与粒子群算法、遗传算法和鲸鱼优化算法进行对比分析,验证文中设计算法的有效性。最后,以重庆市某生鲜配送网络为例,对比分析优化前后的运营指标,并探讨生鲜商品价值损失水平与物流总成本之间的关系。结果经优化后,物流总成本下降了22.35%,其中惩罚成本、价值损失、配送成本和温控成本分别下降了39.84%、61.84%、29.80%、57.00%。结论文中所提的模型、算法和动态需求处理策略可以合理规划配送路径,有效降低了总成本,为考虑动态需求的生鲜配送网络优化提供了参考。 展开更多
关键词 生鲜商品配送 动态需求 价值损失 高斯混合聚类 改进蚁群算法
在线阅读 下载PDF
基于快速求解高斯混合模型的流量聚类算法 被引量:10
17
作者 党小超 毛鹏鑫 郝占军 《计算机工程与应用》 CSCD 北大核心 2015年第8期96-101,共6页
基于聚类算法可以对多个属性聚类的特点,提出一种基于快速求解高斯混合模型的聚类算法,用于研究网络流量的分类,使其达到更佳的聚类效果。通过与其他算法比较,讨论了该种方法在流量聚类中的适用性。仿真结果表明,该方法聚类精度高,经过... 基于聚类算法可以对多个属性聚类的特点,提出一种基于快速求解高斯混合模型的聚类算法,用于研究网络流量的分类,使其达到更佳的聚类效果。通过与其他算法比较,讨论了该种方法在流量聚类中的适用性。仿真结果表明,该方法聚类精度高,经过初始聚类中心后的EM算法用于求解GMM有较高的估算准确性,有效地提高了EM算法的收敛速度。 展开更多
关键词 K-MEANS算法 参数初始化 高斯混合模型 流量聚类
在线阅读 下载PDF
融合密度峰值的高斯混合模型聚类算法 被引量:11
18
作者 陶志勇 刘晓芳 王和章 《计算机应用》 CSCD 北大核心 2018年第12期3433-3437,3443,共6页
针对高斯混合模型(GMM)聚类算法对初始值敏感且容易陷入局部极小值的问题,利用密度峰值(DP)算法全局搜索能力强的优势,对GMM算法的初始聚类中心进行优化,提出了一种融合DP的GMM聚类算法(DPGMMC)。首先,基于DP算法寻找聚类中心,得到混合... 针对高斯混合模型(GMM)聚类算法对初始值敏感且容易陷入局部极小值的问题,利用密度峰值(DP)算法全局搜索能力强的优势,对GMM算法的初始聚类中心进行优化,提出了一种融合DP的GMM聚类算法(DPGMMC)。首先,基于DP算法寻找聚类中心,得到混合模型的初始参数;其次,采用最大期望(EM)算法迭代估计混合模型的参数;最后,根据贝叶斯后验概率准则实现数据点的聚类。在Iris数据集下,DP-GMMC聚类准确率可达到96. 67%,与传统GMM算法相比提高了33. 6个百分点,解决了对初始聚类中心依赖的问题。实验结果表明,DP-GMMC对低维数据集有较好的聚类效果。 展开更多
关键词 聚类 高斯混合模型 最大期望算法 密度峰值
在线阅读 下载PDF
基于树结构椭圆簇分裂的深度图像分割算法 被引量:1
19
作者 向日华 王润生 《计算机学报》 EI CSCD 北大核心 2004年第2期168-176,共9页
提出了一种基于树结构椭圆簇分裂的深度图像分割算法 .该算法是根据聚类簇协方差矩阵分解的物理含义 ,利用数据的二维散布来同时确定分裂扰动矢量的方向和长度 ,迭代地分裂聚类簇 ,为期望最大化算法提供初始值 .算法还充分利用表面法向... 提出了一种基于树结构椭圆簇分裂的深度图像分割算法 .该算法是根据聚类簇协方差矩阵分解的物理含义 ,利用数据的二维散布来同时确定分裂扰动矢量的方向和长度 ,迭代地分裂聚类簇 ,为期望最大化算法提供初始值 .算法还充分利用表面法向高斯混合模型的物理含义来减少聚类次数 ,并根据几何含义清晰的门限自适应确定类别数 .作者针对两种深度相机的 6 0幅真实深度图像进行了实验 ,并与传统的树结构扰动方案以及K均值算法初始方案进行了客观比较 .实验证明 。 展开更多
关键词 树结构椭圆簇分裂 图像分割 像素 协方差矩阵 特征向量
在线阅读 下载PDF
基于相似日理论和CSO-WGPR的短期光伏发电功率预测 被引量:49
20
作者 孟安波 陈嘉铭 +3 位作者 黎湛联 丁伟锋 欧祖宏 殷豪 《高电压技术》 EI CAS CSCD 北大核心 2021年第4期1176-1184,共9页
针对光伏发电功率预测精度不高的问题,提出一种结合纵横交叉算法与改进的高斯过程回归算法(crisscross optimization algorithm and weighted Gaussian process regression,CSO-WGPR)的预测模型。首先,通过加权模糊聚类对天气类型进行划... 针对光伏发电功率预测精度不高的问题,提出一种结合纵横交叉算法与改进的高斯过程回归算法(crisscross optimization algorithm and weighted Gaussian process regression,CSO-WGPR)的预测模型。首先,通过加权模糊聚类对天气类型进行划分,选出与预测日相同类型的相似日样本;其次,采用单类支持向量机(One-Class supportvectormachine,One-ClassSVM)算法结合传统高斯过程回归算法,建立改进后的高斯过程回归模型(weighted Gaussianprocess regression,WGPR),减小异常值数据对预测结果的不良影响;然后,采用纵横交叉算法(crisscross optimization algorithm,CSO)优化WGPR的超参数,进一步提高模型的预测精度。以澳洲爱丽丝泉光伏系统为例进行建模预测,真实数据仿真和实验结果表明,所提预测模型在晴天、阴天、雨天类型下具有更高的预测精度,验证了该方法的有效性。 展开更多
关键词 光伏发电 功率预测 加权模糊聚类 单类支持向量机 改进的高斯过程回归 纵横交叉算法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部