The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are...The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are inferred based on the maximum likelihood rule. Secondly, the forgetting factor and learning rate factor are redefined, and their still more general formulations are obtained by analyzing their practical functions. Lastly, the convergence of the proposed algorithm is proved to enable the estimation converge to a local maximum of the data likelihood function according to the stochastic approximation theory. The experiments show that the proposed learning algorithm excels the formers both in converging rate and accuracy.展开更多
With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
针对柴油发动机推进特性下的中高负荷工况出现的NO_(x)排放峰值现象,以及燃油价格日益上涨带来降低油耗率的迫切需求,本研究通过调节柴油/甲醇组合燃烧(diesel/methanol compound combustion,DMCC)发动机多种控制参数,在保证动力性前提...针对柴油发动机推进特性下的中高负荷工况出现的NO_(x)排放峰值现象,以及燃油价格日益上涨带来降低油耗率的迫切需求,本研究通过调节柴油/甲醇组合燃烧(diesel/methanol compound combustion,DMCC)发动机多种控制参数,在保证动力性前提下,实现NO_(x)排放和有效燃油消耗率(brake specific fuel consumption,BSFC)的同步下降。为避免大规模试验带来的成本增加,首先基于高斯过程回归建立DMCC发动机排放的NO_(x)体积分数、BSFC和指示功率预测模型;然后将所建模型与第二代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)结合,对NO_(x)的体积分数和BSFC进行优化,并将Pareto前沿解集代入逼近理想解排序法(the technique for order preference by similarity to an ideal solution,TOPSIS)寻找最优控制参数组合;最后将最优控制参数组合标定至电子控制单元,与原机数据进行对比分析。结果表明:基于高斯过程回归建立的预测模型的拟合优度大于0.95,均方根误差小于1,具有良好的一致性和准确性;使用NSGA-Ⅱ获取的最佳控制参数与优化前(原机工况)的相比,NO_(x)的排放量下降74.5%,仅为3.47 g/(kW·h),BSFC平均下降6.7%,仅为203.5 g/(kW·h)。展开更多
可靠准确地预测动力电池剩余使用寿命(remaining useful life,RUL)可以缓解用户对里程和安全的焦虑。为了提升RUL预测精度,基于NASA数据集,本工作提出了一种改进的灰狼算法来优化高斯过程回归(Gaussian process regression,GPR)模型。...可靠准确地预测动力电池剩余使用寿命(remaining useful life,RUL)可以缓解用户对里程和安全的焦虑。为了提升RUL预测精度,基于NASA数据集,本工作提出了一种改进的灰狼算法来优化高斯过程回归(Gaussian process regression,GPR)模型。本工作从以下三方面开展研究。首先,基于电池的充放电数据,提取了五种间接健康因子,包括充电电压饱和间隔(CVSI,HI1)、充电峰值温度间隔(CPTI,HI2)、恒流充电间隔(CCCI,HI3)、放电峰值温度区间(DPTI,HI4)和放电恒流间隔(DCCI,HI5),并采用灰色关联方法分析健康因子和容量的相关性。其次,本工作选取GPR方法作为动力电池RUL预测模型,针对传统模型参数辨识已陷入局部最优问题,提出了基于差分算法改进的灰狼算法,提升模型预测能力。最后,利用NASA数据集对本工作所提方法进行验证。实验结果表明,所提算法预测RUL误差控制在2%以内。展开更多
基金the Doctorate Foundation of the Engineering College, Air Force Engineering University.
文摘The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are inferred based on the maximum likelihood rule. Secondly, the forgetting factor and learning rate factor are redefined, and their still more general formulations are obtained by analyzing their practical functions. Lastly, the convergence of the proposed algorithm is proved to enable the estimation converge to a local maximum of the data likelihood function according to the stochastic approximation theory. The experiments show that the proposed learning algorithm excels the formers both in converging rate and accuracy.
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.
文摘针对柴油发动机推进特性下的中高负荷工况出现的NO_(x)排放峰值现象,以及燃油价格日益上涨带来降低油耗率的迫切需求,本研究通过调节柴油/甲醇组合燃烧(diesel/methanol compound combustion,DMCC)发动机多种控制参数,在保证动力性前提下,实现NO_(x)排放和有效燃油消耗率(brake specific fuel consumption,BSFC)的同步下降。为避免大规模试验带来的成本增加,首先基于高斯过程回归建立DMCC发动机排放的NO_(x)体积分数、BSFC和指示功率预测模型;然后将所建模型与第二代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)结合,对NO_(x)的体积分数和BSFC进行优化,并将Pareto前沿解集代入逼近理想解排序法(the technique for order preference by similarity to an ideal solution,TOPSIS)寻找最优控制参数组合;最后将最优控制参数组合标定至电子控制单元,与原机数据进行对比分析。结果表明:基于高斯过程回归建立的预测模型的拟合优度大于0.95,均方根误差小于1,具有良好的一致性和准确性;使用NSGA-Ⅱ获取的最佳控制参数与优化前(原机工况)的相比,NO_(x)的排放量下降74.5%,仅为3.47 g/(kW·h),BSFC平均下降6.7%,仅为203.5 g/(kW·h)。
文摘可靠准确地预测动力电池剩余使用寿命(remaining useful life,RUL)可以缓解用户对里程和安全的焦虑。为了提升RUL预测精度,基于NASA数据集,本工作提出了一种改进的灰狼算法来优化高斯过程回归(Gaussian process regression,GPR)模型。本工作从以下三方面开展研究。首先,基于电池的充放电数据,提取了五种间接健康因子,包括充电电压饱和间隔(CVSI,HI1)、充电峰值温度间隔(CPTI,HI2)、恒流充电间隔(CCCI,HI3)、放电峰值温度区间(DPTI,HI4)和放电恒流间隔(DCCI,HI5),并采用灰色关联方法分析健康因子和容量的相关性。其次,本工作选取GPR方法作为动力电池RUL预测模型,针对传统模型参数辨识已陷入局部最优问题,提出了基于差分算法改进的灰狼算法,提升模型预测能力。最后,利用NASA数据集对本工作所提方法进行验证。实验结果表明,所提算法预测RUL误差控制在2%以内。