期刊文献+
共找到589篇文章
< 1 2 30 >
每页显示 20 50 100
EFFECTIVE IMAGE SEGMENTATION FRAMEWORK FOR GAUSSIAN MIXTURE MODEL INCORPORATING LOCAL INFORMATION 被引量:3
1
作者 蔡维玲 丁军娣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期266-274,共9页
A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec-... A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec- ond step, the discriminant-based methods or clustering-based methods are performed on the reformed distribution. It is focused on the typical clustering methods-Gaussian mixture model (GMM) and its variant to demonstrate the feasibility of the framework. Due to the independence of the first step in its second step, it can be integrated into the pixel-based and the histogram-based methods to improve their segmentation quality. The experiments on artificial and real images show that the framework can achieve effective and robust segmentation results. 展开更多
关键词 pattern recognition image processing image segmentation gaussian mixture model (gmm expectation maximization (EM)
在线阅读 下载PDF
Gaussian Mixture-Learned Approximate Message Passing(GM-LAMP)Based Hybrid Precoders for mmWave Massive MIMO Systems
2
作者 Shoukath Ali K Sajan P Philip Perarasi T 《China Communications》 SCIE CSCD 2024年第12期66-79,共14页
Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave(mmWave)massive multiple-input multiple-output(MIMO)systems.In this paper,Gaussian Mixture lear... Hybrid precoder design is a key technique providing better antenna gain and reduced hardware complexity in millimeter-wave(mmWave)massive multiple-input multiple-output(MIMO)systems.In this paper,Gaussian Mixture learned approximate message passing(GM-LAMP)network is presented for the design of optimal hybrid precoders suitable for mmWave Massive MIMO systems.Optimal hybrid precoder designs using a compressive sensing scheme such as orthogonal matching pursuit(OMP)and its derivatives results in high computational complexity when the dimensionality of the sparse signal is high.This drawback can be addressed using classical iterative algorithms such as approximate message passing(AMP),which has comparatively low computational complexity.The drawbacks of AMP algorithm are fixed shrinkage parameter and non-consideration of prior distribution of the hybrid precoders.In this paper,the fixed shrinkage parameter problem of the AMP algorithm is addressed using learned AMP(LAMP)network,and is further enhanced as GMLAMP network using the concept of Gaussian Mixture distribution of the hybrid precoders.The simula-tion results show that the proposed GM-LAMP network achieves optimal hybrid precoder design with enhanced achievable rates,better accuracy and low computational complexity compared to the existing algorithms. 展开更多
关键词 approximate message passing deep neu-ral network gaussian mixture model massive MIMO millimeter wave
在线阅读 下载PDF
An unsupervised clustering method for nuclear magnetic resonance transverse relaxation spectrums based on the Gaussian mixture model and its application 被引量:2
3
作者 GE Xinmin XUE Zong’an +6 位作者 ZHOU Jun HU Falong LI Jiangtao ZHANG Hengrong WANG Shuolong NIU Shenyuan ZHAO Ji’er 《Petroleum Exploration and Development》 CSCD 2022年第2期339-348,共10页
To make the quantitative results of nuclear magnetic resonance(NMR) transverse relaxation(T;) spectrums reflect the type and pore structure of reservoir more directly, an unsupervised clustering method was developed t... To make the quantitative results of nuclear magnetic resonance(NMR) transverse relaxation(T;) spectrums reflect the type and pore structure of reservoir more directly, an unsupervised clustering method was developed to obtain the quantitative pore structure information from the NMR T;spectrums based on the Gaussian mixture model(GMM). Firstly, We conducted the principal component analysis on T;spectrums in order to reduce the dimension data and the dependence of the original variables. Secondly, the dimension-reduced data was fitted using the GMM probability density function, and the model parameters and optimal clustering numbers were obtained according to the expectation-maximization algorithm and the change of the Akaike information criterion. Finally, the T;spectrum features and pore structure types of different clustering groups were analyzed and compared with T;geometric mean and T;arithmetic mean. The effectiveness of the algorithm has been verified by numerical simulation and field NMR logging data. The research shows that the clustering results based on GMM method have good correlations with the shape and distribution of the T;spectrum, pore structure, and petroleum productivity, providing a new means for quantitative identification of pore structure, reservoir grading, and oil and gas productivity evaluation. 展开更多
关键词 NMR T2 spectrum gaussian mixture model expectation-maximization algorithm Akaike information criterion unsupervised clustering method quantitative pore structure evaluation
在线阅读 下载PDF
Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model 被引量:1
4
作者 周亚同 樊煜 +1 位作者 陈子一 孙建成 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期22-26,共5页
The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It au... The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning. 展开更多
关键词 GPM Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the gaussian Process mixture model EM SHC
在线阅读 下载PDF
Parameter Optimization Method for Gaussian Mixture Model with Data Evolution
5
作者 於跃成 生佳根 邹晓华 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第4期394-404,共11页
To learn from evolutionary experimental data points effectively,an evolutionary Gaussian mixture model based on constraint consistency(EGMM)is proposed and the corresponding method of parameter optimization is present... To learn from evolutionary experimental data points effectively,an evolutionary Gaussian mixture model based on constraint consistency(EGMM)is proposed and the corresponding method of parameter optimization is presented.Here,the Gaussian mixture model(GMM)is adopted to describe the data points,and the differences between the posterior probabilities of pairwise points under the current parameters are introduced to measure the temporal smoothness.Then,parameter optimization of EGMM can be realized by evolutionary clustering.Compared with most of the existing data analysis methods by evolutionary clustering,both the whole features and individual differences of data points are considered in the clustering framework of EGMM.It decreases the algorithm sensitivity to noises and increases the robustness of evaluated parameters.Experimental result shows that the clustering sequence really reflects the shift of data distribution,and the proposed algorithm can provide better clustering quality and temporal smoothness. 展开更多
关键词 evolutionary clustering evolutionary gaussian mixture model temporal smoothness parameter optimization
在线阅读 下载PDF
Clustering in the Wireless Channel with a Power Weighted Statistical Mixture Model in Indoor Scenario 被引量:4
6
作者 Yupeng Li Jianhua Zhang +1 位作者 Pan Tang Lei Tian 《China Communications》 SCIE CSCD 2019年第7期83-95,共13页
Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power in... Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power information which is important for the channel multipath clustering. In this paper, a normalized power weighted GMM (PGMM) is introduced to model the channel multipath components (MPCs). With MPC power as a weighted factor, the PGMM can fit the MPCs in accordance with the cluster-based channel models. Firstly, expectation maximization (EM) algorithm is employed to optimize the PGMM parameters. Then, to further increase the searching ability of EM and choose the optimal number of components without resort to cross-validation, the variational Bayesian (VB) inference is employed. Finally, 28 GHz indoor channel measurement data is used to demonstrate the effectiveness of the PGMM clustering algorithm. 展开更多
关键词 channel MULTIPATH CLUSTERING mmWave gaussian mixture model EXPECTATION MAXIMIZATION VARIATIONAL Bayesian INFERENCE
在线阅读 下载PDF
Modeling and analysis of the ocean dynamic with Gaussian complex network 被引量:1
7
作者 Xin Sun Yongbo Yu +3 位作者 Yuting Yang Junyu Dong Christian Bohm Xueen Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期588-597,共10页
The techniques for oceanographic observation have made great progress in both space-time coverage and quality, which make the observation data present some characteristics of big data. We explore the essence of global... The techniques for oceanographic observation have made great progress in both space-time coverage and quality, which make the observation data present some characteristics of big data. We explore the essence of global ocean dynamic via constructing a complex network with regard to sea surface temperature. The global ocean is divided into discrete regions to represent the nodes of the network. To understand the ocean dynamic behavior, we introduce the Gaussian mixture models to describe the nodes as limit-cycle oscillators. The interacting dynamical oscillators form the complex network that simulates the ocean as a stochastic system. Gaussian probability matching is suggested to measure the behavior similarity of regions. Complex network statistical characteristics of the network are analyzed in terms of degree distribution, clustering coefficient and betweenness. Experimental results show a pronounced sensitivity of network characteristics to the climatic anomaly in the oceanic circulation. Particularly, the betweenness reveals the main pathways to transfer thermal energy of El Niño–Southern oscillation. Our works provide new insights into the physical processes of ocean dynamic, as well as climate changes and ocean anomalies. 展开更多
关键词 complex networks ocean dynamic gaussian mixture model physical processes
在线阅读 下载PDF
DSP-TMM:A Robust Cluster Analysis Method Based on Diversity Self-Paced T-Mixture Model
8
作者 Limin Pan Xiaonan Qin Senlin Luo 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期531-543,共13页
In order to implement the robust cluster analysis,solve the problem that the outliers in the data will have a serious disturbance to the probability density parameter estimation,and therefore affect the accuracy of cl... In order to implement the robust cluster analysis,solve the problem that the outliers in the data will have a serious disturbance to the probability density parameter estimation,and therefore affect the accuracy of clustering,a robust cluster analysis method is proposed which is based on the diversity self-paced t-mixture model.This model firstly adopts the t-distribution as the submodel which tail is easily controllable.On this basis,it utilizes the entropy penalty expectation conditional maximal algorithm as a pre-clustering step to estimate the initial parameters.After that,this model introduces l2,1-norm as a self-paced regularization term and developes a new ECM optimization algorithm,in order to select high confidence samples from each component in training.Finally,experimental results on several real-world datasets in different noise environments show that the diversity self-paced t-mixture model outperforms the state-of-the-art clustering methods.It provides significant guidance for the construction of the robust mixture distribution model. 展开更多
关键词 cluster analysis gaussian mixture model t-distribution mixture model self-paced learning INITIALIZATION
在线阅读 下载PDF
Remaining Useful Life Estimation of Lithium-Ion Battery Based on Gaussian Mixture Ensemble Kalman Filter
9
作者 Ruoxia Li Siyuan Zhang Peijun Yang 《Journal of Beijing Institute of Technology》 EI CAS 2022年第4期340-349,共10页
The remaining useful life(RUL)prediction is a crucial indicator for the lithium-ion battery health prognostic.The particle filter(PF),used together with an empirical model,has become one of the most well-accepted tech... The remaining useful life(RUL)prediction is a crucial indicator for the lithium-ion battery health prognostic.The particle filter(PF),used together with an empirical model,has become one of the most well-accepted techniques for RUL prediction.In this work,a novel filtering algorithm,named the Gaussian mixture model(GMM)-ensemble Kalman filter(EnKF)is proposed.It embeds the Gaussian mixture model in the EnKF framework to cope with the non-Gaussian feature of the system state space,and meanwhile address some of the major shortcomings of the PF.The GMM-EnKF and the PF are both applied on public data sets for RUL prediction and the simulation results show superiority of our proposed approach to the PF. 展开更多
关键词 lithium-ion battery gaussian mixture model ensemble Kalman filter(EnKF) remaining useful life(RUL)
在线阅读 下载PDF
基于模态理论和改进GMM的声发射源识别研究 被引量:1
10
作者 杨勇 李晶 +1 位作者 朱作付 邓艾东 《电子器件》 CAS 2024年第1期128-133,共6页
基于模态声发射信号理论,提出了一种利用声学对数倒谱统计参数作为声发射信号特征参数的分析与提取方法。从声发射信号多模态特性出发,提出了一个基于改进高斯混合模型的声发射源信号识别系统。理论分析和实验结果表明,该方法能准确地... 基于模态声发射信号理论,提出了一种利用声学对数倒谱统计参数作为声发射信号特征参数的分析与提取方法。从声发射信号多模态特性出发,提出了一个基于改进高斯混合模型的声发射源信号识别系统。理论分析和实验结果表明,该方法能准确地判断声发射信号源,不仅能够应用于突发型声发射信号的识别,而且可以应用于连续型声发射信号的识别。 展开更多
关键词 声发射信号 倒谱 高斯混合模型 识别
在线阅读 下载PDF
基于GMM的湿筛混凝土轴拉损伤演化机制研究
11
作者 陈徐东 石振祥 +2 位作者 张忠诚 宁英杰 白丽辉 《建筑科学与工程学报》 CAS 北大核心 2024年第3期1-9,共9页
为研究不同加载阶段下的二级配湿筛混凝土开裂模式与损伤演化过程,将声发射技术(AE)与高斯混合模型(GMM)进行结合作为损伤识别手段,以3种加载速率(1×10^(-6)、5×10^(-6)、25×10^(-6)s^(-1))作为试验变量,对二级配湿筛混... 为研究不同加载阶段下的二级配湿筛混凝土开裂模式与损伤演化过程,将声发射技术(AE)与高斯混合模型(GMM)进行结合作为损伤识别手段,以3种加载速率(1×10^(-6)、5×10^(-6)、25×10^(-6)s^(-1))作为试验变量,对二级配湿筛混凝土开展单轴拉伸损伤时空演化机制试验研究。结果表明:随着加载速率增大,湿筛混凝土试件内部裂缝开展更加密集,并且裂缝种类随机性更高;利用GMM法对声发射数据进行处理分类结果显示,拉伸裂缝为试验加载过程的主要开裂模式,加载速率升高会导致剪切裂缝占比增大;随着加载速率增大,拉伸裂缝频率分布明显扩大,而剪切裂缝与混合裂缝频率分布基本不变;随着加载进行,拉伸裂缝与剪切裂缝概率密度区域均向AF轴趋近;GMM法所得裂缝开裂模式有拉伸裂缝、剪切裂缝与混合裂缝3种类别,并且随着加载进行,混合断裂区所处位置也会发生变化;相较于常规裂缝模式分类方法,GMM法提供了更好的裂缝分类近似值分析,对裂缝开裂模式表述更加可靠。 展开更多
关键词 湿筛混凝土 损伤识别 高斯混合模型 声发射 单轴拉伸
在线阅读 下载PDF
A Robust Indoor Localization Algorithm Based on Polynomial Fitting and Gaussian Mixed Model 被引量:2
12
作者 Long Cheng Peng Zhao +1 位作者 Dacheng Wei Yan Wang 《China Communications》 SCIE CSCD 2023年第2期179-197,共19页
Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex enviro... Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex environment.In this paper,a robust localization algorithm based on Gaussian mixture model and fitting polynomial is proposed to solve the problem of NLOS error.Firstly,fitting polynomials are used to predict the measured values.The residuals of predicted and measured values are clustered by Gaussian mixture model(GMM).The LOS probability and NLOS probability are calculated according to the clustering centers.The measured values are filtered by Kalman filter(KF),variable parameter unscented Kalman filter(VPUKF)and variable parameter particle filter(VPPF)in turn.The distance value processed by KF and VPUKF and the distance value processed by KF,VPUKF and VPPF are combined according to probability.Finally,the maximum likelihood method is used to calculate the position coordinate estimation.Through simulation comparison,the proposed algorithm has better positioning accuracy than several comparison algorithms in this paper.And it shows strong robustness in strong NLOS environment. 展开更多
关键词 wireless sensor network indoor localization NLOS environment gaussian mixture model(gmm) fitting polynomial
在线阅读 下载PDF
An Aircraft Trajectory Anomaly Detection Method Based on Deep Mixture Density Network 被引量:1
13
作者 CHEN Lijing ZENG Weili YANG Zhao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期840-851,共12页
The timely and accurately detection of abnormal aircraft trajectory is critical to improving flight safety.However,the existing anomaly detection methods based on machine learning cannot well characterize the features... The timely and accurately detection of abnormal aircraft trajectory is critical to improving flight safety.However,the existing anomaly detection methods based on machine learning cannot well characterize the features of aircraft trajectories.Low anomaly detection accuracy still exists due to the high-dimensionality,heterogeneity and temporality of flight trajectory data.To this end,this paper proposes an abnormal trajectory detection method based on the deep mixture density network(DMDN)to detect flights with unusual data patterns and evaluate flight trajectory safety.The technique consists of two components:Utilization of the deep long short-term memory(LSTM)network to encode features of flight trajectories effectively,and parameterization of the statistical properties of flight trajectory using the Gaussian mixture model(GMM).Experiment results on Guangzhou Baiyun International Airport terminal airspace show that the proposed method can effectively capture the statistical patterns of aircraft trajectories.The model can detect abnormal flights with elevated risks and its performance is superior to two mainstream methods.The proposed model can be used as an assistant decision-making tool for air traffic controllers. 展开更多
关键词 aircraft trajectory anomaly detection mixture density network long short-term memory(LSTM) gaussian mixture model(gmm)
在线阅读 下载PDF
基于GMM的幅度相位联合编码CVQKD安全性分析
14
作者 赵常兰 王天一 《激光技术》 CAS CSCD 北大核心 2024年第3期295-302,共8页
为了提高离散调制连续变量量子密钥分发协议性能,采用幅度相移键控(APSK)联合调制格式方法,在接收端采用高斯混合模型分类算法识别量子态来提升系统的性能。将密钥传输系统分为状态学习和状态预测两个阶段,在状态学习阶段基于高斯混合... 为了提高离散调制连续变量量子密钥分发协议性能,采用幅度相移键控(APSK)联合调制格式方法,在接收端采用高斯混合模型分类算法识别量子态来提升系统的性能。将密钥传输系统分为状态学习和状态预测两个阶段,在状态学习阶段基于高斯混合模型的分类器对已知类别的量子态进行训练,学习不同类别量子态的幅度相位分布情况;在状态预测阶段则采用最小欧氏距离计算出待测量子态属于每个类别的后验概率,从而判定待测量子态的类别,并通过参数估计、反向协调和保密增强生成最终密钥。结果表明,在反向协调和集体攻击下128-APSK离散调制连续变量量子密钥分发协议能够有效生成安全密钥,当安全码率为10-6 bit/symbol时,传输距离可接近60 km。该研究为进一步提高离散调制连续变量量子密钥分发协议的系统性能提供了参考。 展开更多
关键词 量子光学 量子密钥分发 连续变量 幅度相移键控 高斯混合模型
在线阅读 下载PDF
基于改进DBSCAN-GMM的设备健康量化建模与应用
15
作者 曾宪利 徐华志 李波波 《现代矿业》 CAS 2024年第11期203-207,共5页
设备的健康状态对于现代工业的生产安全和生产效率有着重要的影响,为了准确感知设备的健康状态,实现设备状态从定性分析到定量分析的过渡,提出了一种带噪声基于密度的聚类算法(DBSCAN),通过与高斯混合模型(GMM)进行结合,前者实现数据的... 设备的健康状态对于现代工业的生产安全和生产效率有着重要的影响,为了准确感知设备的健康状态,实现设备状态从定性分析到定量分析的过渡,提出了一种带噪声基于密度的聚类算法(DBSCAN),通过与高斯混合模型(GMM)进行结合,前者实现数据的分类,后者实现数据的建模,建立了基于改进DBSCAN-GMM的设备健康状态数据量化模型,并结合现场棒磨设备历史运行数据进行了实例分析,验证了该模型的有效性。 展开更多
关键词 设备健康状态 DBSCAN 高斯混合模型 数据感知模型
在线阅读 下载PDF
基于PCA和GMM的宽带网络流量异常检测方法
16
作者 周永博 《通信电源技术》 2024年第15期192-194,共3页
随着网络规模和复杂度的不断提升,宽带网络流量异常检测成为保障网络稳定运行的关键。文章研究一种基于主成分分析(Principal Component Analysis,PCA)和高斯混合模型(Gaussian Mixture Model,GMM)的宽带网络流量异常检测方法。首先,利... 随着网络规模和复杂度的不断提升,宽带网络流量异常检测成为保障网络稳定运行的关键。文章研究一种基于主成分分析(Principal Component Analysis,PCA)和高斯混合模型(Gaussian Mixture Model,GMM)的宽带网络流量异常检测方法。首先,利用PCA技术对网络流量数据进行特征提取与降维处理,以降低数据的维度和复杂性;其次,采用GMM对降维后的数据进行分类;最后,使用KDD 99数据集对所提方法进行测试。实验表明,该方法能够有效检测宽带网络中的异常流量,具有较高的适应性和稳定性。 展开更多
关键词 主成分分析(PCA) 高斯混合模型(gmm) 网络流量 异常检测
在线阅读 下载PDF
一种基于半监督高斯混合聚类的雷达信号侦察结果正确性评估方法
17
作者 李悦 甘荣兵 《电子信息对抗技术》 2025年第2期32-41,共10页
随着电子对抗的发展,各种新型电子对抗设备的应用使电子对抗中的电磁环境愈发复杂,也对电子侦察设备形成正确侦察结果的能力提出了更高要求。电子侦察能够获取敌方雷达辐射源的参数和位置等信息,是进一步实施电子干扰等对抗手段的基础... 随着电子对抗的发展,各种新型电子对抗设备的应用使电子对抗中的电磁环境愈发复杂,也对电子侦察设备形成正确侦察结果的能力提出了更高要求。电子侦察能够获取敌方雷达辐射源的参数和位置等信息,是进一步实施电子干扰等对抗手段的基础。现有电子侦察效能评估方法难以评估非合作雷达侦察结果的正确性,为实现对非合作雷达侦察结果正确性的评估,进一步提升电子侦察效果评估能力,提出一种基于先验知识和应用半监督高斯混合模型(Semi-Supervised Gaussian Mixture Model,Semi-GMM)的侦察结果正确性评估方法。该方法假设能够通过一组高维高斯分布拟合来自不同种类被侦察雷达的雷达信号,并以雷达信号数据在各个高斯分布上的最大后验概率作为该雷达信号数据的评估结果。仿真结果表明,相较于侦察设备形成的雷达数据本身的侦察结果和基于最大综合相似度的评估方法所形成的评估结果,所提出方法形成的评估结果在真实来源上的准确率分别提升了23.70%和10.16%。 展开更多
关键词 半监督学习 高斯混合模型 电子侦察 效能评估
在线阅读 下载PDF
分形理论和高斯混合模型在复合电能质量分类中的应用
18
作者 于燕平 方林 《红水河》 2025年第1期89-94,共6页
针对复合电能质量扰动信号识别困难问题,提出一种基于分形特征和高斯混合模型(gaussian mixture model,GMM)的分类方法。首先,对8种复合电能质量扰动信号进行经验模态分解(empirical mode decomposition,EMD),计算原始信号和前3阶本征... 针对复合电能质量扰动信号识别困难问题,提出一种基于分形特征和高斯混合模型(gaussian mixture model,GMM)的分类方法。首先,对8种复合电能质量扰动信号进行经验模态分解(empirical mode decomposition,EMD),计算原始信号和前3阶本征模态函数的分形特征,并分析其分布;然后,运用GMM进行训练和预测。结果表明:所提出的3种分形特征能区分大多数复合电能质量扰动信号,但对与暂降复合的扰动信号区分能力较差;GMM能较好地对复合电能扰动进行分类,分类结果与特征分布一致,甚至更优。 展开更多
关键词 复合电能质量扰动 分形特征 经验模态分解 高斯混合模型 分类
在线阅读 下载PDF
融入空间关系的GMM全色高分辨率遥感影像监督分割方法 被引量:6
19
作者 王春艳 徐爱功 +1 位作者 孙川 赵雪梅 《电子与信息学报》 EI CSCD 北大核心 2017年第5期1071-1078,共8页
为了解决高分辨率遥感影像中相同地物目标异质性和空间破碎性增大及不同地物目标的相似性增强所带来的分割新问题,该文提出一种融入空间关系的高斯混合模型(GMM)高分辨遥感影像监督分割方法。该方法首先按分割区域进行监督采样,并通过... 为了解决高分辨率遥感影像中相同地物目标异质性和空间破碎性增大及不同地物目标的相似性增强所带来的分割新问题,该文提出一种融入空间关系的高斯混合模型(GMM)高分辨遥感影像监督分割方法。该方法首先按分割区域进行监督采样,并通过最小二乘法进行直方图拟合,对影像中的每个类别区域建立GMM用来精确表征高分辨遥感影像每个分割区域复杂的地物光谱特征;然后在GMM的概率测度域融入空间关系,使每个像素的区域所属由该像素邻域窗口内所有像素概率测度共同决定,以刻画高分辨率遥感影像中像素间的空间相关性;最后按照最大概率测度原则完成对高分辨率遥感影像的分割。为了验证文中算法的可行性与有效性分别对合成影像及真实高分辨率遥感影像进行分割实验,并和经典的FCM方法及HMRF-FCM方法进行对比,定量与定性的结果证明了文中方法能够提高分割精度。 展开更多
关键词 高分辨率遥感影像 高斯混合模型 空间关系 监督分割
在线阅读 下载PDF
基于DPC-GMM算法的船舶燃油系统故障诊断 被引量:7
20
作者 魏一 张跃文 李斌 《中国舰船研究》 CSCD 北大核心 2018年第6期147-153,165,共8页
[目的]传统的高斯混合模型(GMM)算法存在收敛速度较慢的固有缺陷,容易产生过拟合现象,导致参数计算陷入局部最优,不能很好地用于船舶燃油系统的故障诊断。[方法]首先,分析GMM算法及参数估计算法,结合密度峰值聚类(DPC)算法,提出一种基于... [目的]传统的高斯混合模型(GMM)算法存在收敛速度较慢的固有缺陷,容易产生过拟合现象,导致参数计算陷入局部最优,不能很好地用于船舶燃油系统的故障诊断。[方法]首先,分析GMM算法及参数估计算法,结合密度峰值聚类(DPC)算法,提出一种基于DPC-GMM算法的船舶燃油系统故障诊断方法;然后,通过训练船舶燃油系统状态所对应的高斯混合模型参数,实现对船舶燃油系统故障的无监督诊断;最后,基于获取的船舶燃油系统故障数据,验证该方法的有效性。[结果]实验结果表明,采用基于DPC-GMM算法的故障辨识准确率高、识别速度快,优于传统的反向传播(BP)神经网络和支持向量机(SVM)诊断算法。[结论]研究结果对船舶燃油系统的故障诊断有重要的指导意义。 展开更多
关键词 故障诊断 高斯混合模型 期望最大化 密度峰值聚类
在线阅读 下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部