期刊文献+
共找到299篇文章
< 1 2 15 >
每页显示 20 50 100
GMM聚类与高密度电阻法的道路塌陷隐患探测研究
1
作者 张艳辉 张雨燕 +2 位作者 胡宇佳 罗志彬 赵维刚 《中国安全科学学报》 北大核心 2025年第10期115-123,共9页
为解决道路塌陷隐患探测中高密度电阻法分辨率不足和异常识别精度有限的问题,开展基于高密度电阻法的道路塌陷隐患探测分辨率测试和基于高斯混合模型(GMM)聚类的异常识别方法研究。文中正演采用有限差分法,反演采用高斯-牛顿法,通过数... 为解决道路塌陷隐患探测中高密度电阻法分辨率不足和异常识别精度有限的问题,开展基于高密度电阻法的道路塌陷隐患探测分辨率测试和基于高斯混合模型(GMM)聚类的异常识别方法研究。文中正演采用有限差分法,反演采用高斯-牛顿法,通过数值模拟测试不同电极间距的配置对探测分辨率的影响;结合管网漏损诱发道路塌陷的背景,设计地下病害在不同发展阶段的地电模型,采用GMM聚类分析方法优化高密度电阻法的反演结果。结果表明:调整电极间距和测量参数能显著提高探测分辨率,在4.5 m深度下,缩小电极间距能够有效刻画1 m尺度的地下病害体的位置和形态,且0.5 m电极间距能够兼顾探测精度与计算效率,即探测目标异常体尺度的1/2左右。对于同样埋深的异常体,低阻病害的电阻率值恢复效果优于高阻病害,为不同病害目标探测提供参数优化依据。通过管网漏损诱发的地下空洞模型测试,揭示了高密度电阻法在探测不同阶段漏水病害的可行性,而基于GMM的聚类分析进一步提高了异常区域的识别精度。 展开更多
关键词 高斯混合模型(gmm)聚类 高密度电阻法 道路塌陷 隐患探测 分辨率
在线阅读 下载PDF
基于GMM的GB-InSAR图像PS点选择方法
2
作者 田卫明 王龙跃 +1 位作者 高嵩 邓云开 《电子学报》 北大核心 2025年第4期1153-1163,共11页
永久散射体(Permanent Scatterer,PS)点选择是地基干涉合成孔径雷达(Ground-Based Interferometric Synthetic Aperture Radar,GB-InSAR)处理中的关键步骤.现有的PS点选择方法依赖于幅相稳定性或像元之间的高相干性筛选PS点,其中幅相稳... 永久散射体(Permanent Scatterer,PS)点选择是地基干涉合成孔径雷达(Ground-Based Interferometric Synthetic Aperture Radar,GB-InSAR)处理中的关键步骤.现有的PS点选择方法依赖于幅相稳定性或像元之间的高相干性筛选PS点,其中幅相稳定性对相位波动敏感,在一些情况下不能很好地表征PS点的相位误差,而基于高相干性的方法基于局部窗口,容易造成误检.针对上述问题,本文分析了GB-InSAR图像中PS点与非PS点的干涉相位在分布特征上的差异,并基于此提出了一种基于高斯混合模型(Gaussian Mixture Model,GMM)的PS点选择方法.首先在保证质量的前提下,选择足够数量的PS点作为先验参考信息,然后使用GMM拟合参考PS点干涉相位的概率分布,最后依靠全图像元的干涉相位序列与GMM的匹配程度区分PS点与非PS点.实测数据表明,与基于幅相稳定性的传统方法相比,在获得的PS点数量接近的情况下,本文方法获取的PS点的相关性更强,干涉相位序列聚合程度更高,且残差点数量更少. 展开更多
关键词 永久散射体(PS) 地基干涉合成孔径雷达(GB-InSAR) 高斯混合模型(gmm)
在线阅读 下载PDF
一种基于DTW-DP-GMM的工业机器人轨迹学习策略 被引量:3
3
作者 肖洒 陈旭阳 +1 位作者 叶锦华 吴海彬 《天津大学学报(自然科学与工程技术版)》 EI CAS 北大核心 2025年第1期68-80,共13页
针对机器人示教编程过程中使用高斯混合模型(GMM)规划运动轨迹时存在的高斯分布个数难以选择、复现轨迹精度较低等问题,提出了一种复合的机器人运动轨迹学习策略.该策略包含动态时间规整(DTW)算法、高斯混合模型与道格拉斯-普克(DP)算法... 针对机器人示教编程过程中使用高斯混合模型(GMM)规划运动轨迹时存在的高斯分布个数难以选择、复现轨迹精度较低等问题,提出了一种复合的机器人运动轨迹学习策略.该策略包含动态时间规整(DTW)算法、高斯混合模型与道格拉斯-普克(DP)算法.首先,针对示教过程中采集的多条轨迹在时间长度上存在差异的问题,采用DTW算法来统一示教轨迹在时域上的变化.其次,使用GMM算法对示教轨迹的特征进行提取,并利用高斯混合回归(GMR)算法将其重构为复现轨迹.在这个过程中采用DP算法来预估GMM算法的关键参数高斯分布的数量,与传统方法相比,能够简单直观地得到相对准确的参数值.利用DP算法对复现轨迹的数据点进行稀疏化并优化,不仅确保了机器人最终运动轨迹的精度,而且大幅减少了最终轨迹数据点的数量.最后,进行了不同形状的模拟焊接轨迹学习规划实验.结果表明:经由DTW对齐后的示教轨迹具有更加明显的运动特征,经过GMM-GMR学习输出的复现轨迹具有良好的表征结果;在使用GMM-GMR算法学习示教轨迹的过程中,采用DP算法可以有效预估高斯分布个数;经过DP算法稀疏化并优化的最终轨迹的平均位置误差均在0.500 mm以内,其最大误差可以控制在0.800 mm以内,可以满足焊接轨迹规划的精度要求,验证了该策略的有效性和优越性. 展开更多
关键词 工业机器人 示教编程 高斯混合模型 道格拉斯-普克算法 动态时间规整 轨迹复现
在线阅读 下载PDF
基于GMM和GA-LSTM的稀土熔盐电解过程原料含量状态识别模型 被引量:1
4
作者 张震 朱尚琳 +3 位作者 伍昕宇 刘飞飞 何鑫凤 王家超 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第5期1727-1742,共16页
在高温高风险的稀土熔盐电解工艺中,为了实现稀土熔盐电解过程原料含量状态的智能识别,提出了一种基于混合高斯背景建模(GMM)和遗传算法优化的长短期记忆神经网络(GA-LSTM)的分类模型。模型通过GMM算法、R通道自适应滤波和中值滤波准确... 在高温高风险的稀土熔盐电解工艺中,为了实现稀土熔盐电解过程原料含量状态的智能识别,提出了一种基于混合高斯背景建模(GMM)和遗传算法优化的长短期记忆神经网络(GA-LSTM)的分类模型。模型通过GMM算法、R通道自适应滤波和中值滤波准确提取图像的火焰前景和特征,以量化熔盐电解反应的剧烈程度,进而判断稀土熔盐电解处于原料含量过多或含量正常状态;然后利用GA-LSTM神经网络建立熔盐表面火焰特征和稀土熔盐电解过程原料含量状态的非线性映射关系。结果表明:模型的识别精度高达99.79%,具有较好的泛化性,为实现稀土熔盐电解工艺自动化提供了一定的参考价值。 展开更多
关键词 稀土熔盐 火焰 特征 混合高斯模型 长短期记忆神经网络 遗传算法
在线阅读 下载PDF
弹丸卫星接收机误差建模与弹道参数估计方法
5
作者 杨瑞伟 林子杨 +2 位作者 申强 吴永辉 李红云 《北京理工大学学报》 北大核心 2025年第4期334-343,共10页
针对弹道修正弹在弹道环境下状态估计精度差的问题,利用试验过程中的数据,从弹丸记录仪卫星定位和测速数据与雷达数据中分离出弹丸飞行过程中弹道测量误差序列,使用高斯混合模型(GMM)对误差概率分布进行近似拟合,并对其表述形式进行统一... 针对弹道修正弹在弹道环境下状态估计精度差的问题,利用试验过程中的数据,从弹丸记录仪卫星定位和测速数据与雷达数据中分离出弹丸飞行过程中弹道测量误差序列,使用高斯混合模型(GMM)对误差概率分布进行近似拟合,并对其表述形式进行统一.对传统的高斯混合扩展卡尔曼滤波(GMEKF)算法进行改进,考虑噪声在相邻多个时刻之间的相关性,使用AR模型将有色观测噪声解耦并使用状态扩增法、差分法对有色噪声进行白化处理.以修正弹弹道仿真为例进行算法验证及对比,实验结果证明了改进GMEKF算法在提升弹道参数估计精度以及落点精度的有效性. 展开更多
关键词 非高斯有色噪声 高斯混合模型 高斯混合扩展卡尔曼滤波 状态估计
在线阅读 下载PDF
基于高斯混合-隐马尔可夫模型的驾驶意图识别 被引量:1
6
作者 沈瑜 刘广辉 +2 位作者 马翾鹏 许佳文 严源 《汽车技术》 北大核心 2025年第5期22-28,共7页
为了实现高速公路场景下车辆驾驶意图的精准识别,提出一种Frenet坐标系下双参考线高斯混合与隐马尔可夫融合的驾驶意图识别模型。根据车辆位置选取Frenet坐标系下不同参考线的行驶数据作为模型观测变量,将前、后时刻高斯混合模型输出的... 为了实现高速公路场景下车辆驾驶意图的精准识别,提出一种Frenet坐标系下双参考线高斯混合与隐马尔可夫融合的驾驶意图识别模型。根据车辆位置选取Frenet坐标系下不同参考线的行驶数据作为模型观测变量,将前、后时刻高斯混合模型输出的观测概率联合隐马尔可夫模型,识别当前时刻车辆驾驶意图。采用NGSIM中US-101数据集验证模型效果,结果表明:双参考线的高斯混合-隐马尔可夫模型对车道保持、车辆变道识别准确率分别达到93.33%、92.24%,具有良好的识别效果。 展开更多
关键词 自动驾驶 驾驶意图识别 高斯混合模型 隐马尔可夫模型 Frenet坐标系
在线阅读 下载PDF
基于分裂EM算法的GMM参数估计 被引量:14
7
作者 钟金琴 辜丽川 +1 位作者 檀结庆 李莹莹 《计算机工程与应用》 CSCD 2012年第34期28-32,59,共6页
期望最大化(Expectation Maximization,EM)算法是一种求参数极大似然估计的迭代算法,常用来估计混合密度分布模型的参数。EM算法的主要问题是参数初始化依赖于先验知识且在迭代过程中容易收敛到局部极大值。提出一种新的基于分裂EM算法... 期望最大化(Expectation Maximization,EM)算法是一种求参数极大似然估计的迭代算法,常用来估计混合密度分布模型的参数。EM算法的主要问题是参数初始化依赖于先验知识且在迭代过程中容易收敛到局部极大值。提出一种新的基于分裂EM算法的GMM参数估计算法,该方法从一个确定的单高斯分布开始,在EM优化过程中逐渐分裂并估计混合分布的参数,解决了参数迭代收敛到局部极值问题。大量的实验表明,与现有的其他参数估计算法相比,算法具有较好的运算效率和估算准确性。 展开更多
关键词 高斯混合模型 期望最大化 参数估计 模式分类
在线阅读 下载PDF
改进的基于GMM的运动目标检测方法 被引量:8
8
作者 李刚 何小海 +1 位作者 张生军 高明亮 《计算机应用研究》 CSCD 北大核心 2011年第12期4738-4741,4756,共5页
针对传统混合高斯背景建模(GMM)在一些复杂场景下未能有效地描述背景,提出了一种改进算法。该算法引入更新和消退控制因子改进参数更新模型,并定量约束运动目标停留时间,采用从时间域上过滤得到的快速变化的背景进行背景减除操作,最后... 针对传统混合高斯背景建模(GMM)在一些复杂场景下未能有效地描述背景,提出了一种改进算法。该算法引入更新和消退控制因子改进参数更新模型,并定量约束运动目标停留时间,采用从时间域上过滤得到的快速变化的背景进行背景减除操作,最后在空间域上对检测结果进行数学形态学的处理。实验结果表明,该算法能够提高背景建立和形成速度,增强对背景扰动和光照变化的抗干扰能力,对固定摄像机场景下运动目标的检测具有良好的鲁棒性。 展开更多
关键词 混合高斯模型 背景建模 目标检测 背景减除
在线阅读 下载PDF
基于GMM的间歇过程故障检测 被引量:17
9
作者 王静 胡益 侍洪波 《自动化学报》 EI CSCD 北大核心 2015年第5期899-905,共7页
对间歇过程的多操作阶段进行划分时,往往会被离群点和噪声干扰,影响建模的精确性,针对此问题提出一种新的方法:主元分析–多方向高斯混合模型(Principal component analysis-multiple Gaussian mixture model,PCA-MGMM)建模方法.首先用... 对间歇过程的多操作阶段进行划分时,往往会被离群点和噪声干扰,影响建模的精确性,针对此问题提出一种新的方法:主元分析–多方向高斯混合模型(Principal component analysis-multiple Gaussian mixture model,PCA-MGMM)建模方法.首先用最短长度法对数据进行等长处理,融合不同展开方法相结合的处理方式消除数据预估问题;利用主元分析方法将数据转换到对故障较为敏感的低维子空间中,得到主元的同时消除了离群点和噪声的干扰;通过改进的高斯混合模型(Gaussian mixture model,GMM)算法对各阶段主元进行聚类,减少了运算量的同时自动得到最佳高斯成分和对应的统计分布参数;最后将局部指标融合为全局概率监控指标,实现了连续的在线监控.通过一个实际的半导体制造过程的仿真研究验证了所提方法的有效性. 展开更多
关键词 间歇过程 多阶段操作 故障检测 高斯混合模型 全局概率指标
在线阅读 下载PDF
基于EM和GMM相结合的自适应灰度图像分割算法 被引量:9
10
作者 罗胜 郑蓓蓉 叶忻泉 《光子学报》 EI CAS CSCD 北大核心 2009年第6期1581-1585,共5页
提出一种阈值自适应、EM方法估计GMM参量的图像分割算法,能够根据图像的内容结合区域和边界两方面的信息自适应地选择阈值,精确地进行图像边界分割.算法首先提取图像的边界,然后根据边界的直方图计算图像的可分割性,由可分割性确定EM方... 提出一种阈值自适应、EM方法估计GMM参量的图像分割算法,能够根据图像的内容结合区域和边界两方面的信息自适应地选择阈值,精确地进行图像边界分割.算法首先提取图像的边界,然后根据边界的直方图计算图像的可分割性,由可分割性确定EM方法的阈值进行GMM分割,最后合并图像的近似区域.实验数据表明,相比其它图像分割算法,以及固定阈值的传统EM算法,本算法的分割结果更为准确. 展开更多
关键词 图像分割 混合高斯模型 期望最大算法 自适应阈值
在线阅读 下载PDF
融入空间关系的GMM全色高分辨率遥感影像监督分割方法 被引量:7
11
作者 王春艳 徐爱功 +1 位作者 孙川 赵雪梅 《电子与信息学报》 EI CSCD 北大核心 2017年第5期1071-1078,共8页
为了解决高分辨率遥感影像中相同地物目标异质性和空间破碎性增大及不同地物目标的相似性增强所带来的分割新问题,该文提出一种融入空间关系的高斯混合模型(GMM)高分辨遥感影像监督分割方法。该方法首先按分割区域进行监督采样,并通过... 为了解决高分辨率遥感影像中相同地物目标异质性和空间破碎性增大及不同地物目标的相似性增强所带来的分割新问题,该文提出一种融入空间关系的高斯混合模型(GMM)高分辨遥感影像监督分割方法。该方法首先按分割区域进行监督采样,并通过最小二乘法进行直方图拟合,对影像中的每个类别区域建立GMM用来精确表征高分辨遥感影像每个分割区域复杂的地物光谱特征;然后在GMM的概率测度域融入空间关系,使每个像素的区域所属由该像素邻域窗口内所有像素概率测度共同决定,以刻画高分辨率遥感影像中像素间的空间相关性;最后按照最大概率测度原则完成对高分辨率遥感影像的分割。为了验证文中算法的可行性与有效性分别对合成影像及真实高分辨率遥感影像进行分割实验,并和经典的FCM方法及HMRF-FCM方法进行对比,定量与定性的结果证明了文中方法能够提高分割精度。 展开更多
关键词 高分辨率遥感影像 高斯混合模型 空间关系 监督分割
在线阅读 下载PDF
基于改进GMM的耳语语音情感识别方法研究 被引量:3
12
作者 蒋庆斌 包永强 +1 位作者 王浩 赵力 《计算机应用与软件》 CSCD 北大核心 2012年第11期73-74,136,共3页
提出一种基于改进GMM模型的耳语情感语音识别方法。该方法在GMM的每个成员通过用矢量量化误差值取代传统GMM的输出概率值来计算模型的得分,使得建模时所需训练数据量减少,并且识别速度有所提高。实验结果表明当训练数据较少时,提出的新... 提出一种基于改进GMM模型的耳语情感语音识别方法。该方法在GMM的每个成员通过用矢量量化误差值取代传统GMM的输出概率值来计算模型的得分,使得建模时所需训练数据量减少,并且识别速度有所提高。实验结果表明当训练数据较少时,提出的新的识别方法的实验结果明显好于传统的GMM方法,证明了该方法的有效性。 展开更多
关键词 耳语语音 高斯混合模型 情感识别
在线阅读 下载PDF
基于DPC-GMM算法的船舶燃油系统故障诊断 被引量:7
13
作者 魏一 张跃文 李斌 《中国舰船研究》 CSCD 北大核心 2018年第6期147-153,165,共8页
[目的]传统的高斯混合模型(GMM)算法存在收敛速度较慢的固有缺陷,容易产生过拟合现象,导致参数计算陷入局部最优,不能很好地用于船舶燃油系统的故障诊断。[方法]首先,分析GMM算法及参数估计算法,结合密度峰值聚类(DPC)算法,提出一种基于... [目的]传统的高斯混合模型(GMM)算法存在收敛速度较慢的固有缺陷,容易产生过拟合现象,导致参数计算陷入局部最优,不能很好地用于船舶燃油系统的故障诊断。[方法]首先,分析GMM算法及参数估计算法,结合密度峰值聚类(DPC)算法,提出一种基于DPC-GMM算法的船舶燃油系统故障诊断方法;然后,通过训练船舶燃油系统状态所对应的高斯混合模型参数,实现对船舶燃油系统故障的无监督诊断;最后,基于获取的船舶燃油系统故障数据,验证该方法的有效性。[结果]实验结果表明,采用基于DPC-GMM算法的故障辨识准确率高、识别速度快,优于传统的反向传播(BP)神经网络和支持向量机(SVM)诊断算法。[结论]研究结果对船舶燃油系统的故障诊断有重要的指导意义。 展开更多
关键词 故障诊断 高斯混合模型 期望最大化 密度峰值聚类
在线阅读 下载PDF
亮度特征自相关和GMM相结合的目标检测 被引量:7
14
作者 王思明 赵伟 《计算机工程》 CAS CSCD 2014年第5期219-223,共5页
基于混合高斯模型(GMM)的背景建模算法被广泛运用于运动目标检测,但在一些发生快速光照变化的视频序列中,不能正确地检测出运动目标。此外在对GMM参数进行初始化时,若初始化图像中存在运动目标,则目标检测的结果会出现初始化图像中的运... 基于混合高斯模型(GMM)的背景建模算法被广泛运用于运动目标检测,但在一些发生快速光照变化的视频序列中,不能正确地检测出运动目标。此外在对GMM参数进行初始化时,若初始化图像中存在运动目标,则目标检测的结果会出现初始化图像中的运动目标,从而导致误检测。针对上述问题,提出一种基于亮度特征自相关的GMM算法,该算法根据亮度特征自相关参数判断初始化图像中是否存在运动目标,利用亮度特征自相关参数的拟合值判断当前帧是否发生快速光照变化,运用GMM和亮度差值相结合进行目标检测。对实际摄取的视频进行仿真实验,结果证明,该算法在GMM初始化图像存在运动目标的干扰条件下,能够较好地从发生快速光照变化的视频序列中提取出运动目标,满足准确性和实时性的要求。 展开更多
关键词 背景建模 混合高斯模型 自相关 亮度特征 像素匹配
在线阅读 下载PDF
基于GMM区分性训练方法的语言辨识系统 被引量:4
15
作者 屈丹 王炳锡 藏传辉 《计算机工程与应用》 CSCD 北大核心 2004年第6期108-110,共3页
文章给出了一种新的语言辨识系统,该系统基于高斯混合模型的区分性训练算法。该区分训练算法在估计模型参数时,采用了广义概率下降法(GPD)和最小分类误差准则(MCE)。利用OGI多语言电话语料库对算法进行了测试,实验表明,该算法是进行语... 文章给出了一种新的语言辨识系统,该系统基于高斯混合模型的区分性训练算法。该区分训练算法在估计模型参数时,采用了广义概率下降法(GPD)和最小分类误差准则(MCE)。利用OGI多语言电话语料库对算法进行了测试,实验表明,该算法是进行语言辨识的一种有效方法。 展开更多
关键词 高斯混合模型 广义概率下降法 误分类测度
在线阅读 下载PDF
融合GMM及SVM的特定音频事件高精度识别方法 被引量:5
16
作者 罗森林 王坤 +2 位作者 谢尔曼 潘丽敏 李金玉 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第7期716-722,共7页
针对特定音频事件识别中持续时间特别短的音频事件漏检概率高、识别速度较慢的问题,提出一种融合高斯混合模型(GMM)及支持向量机(SVM)的特定音频事件识别算法.该方法利用GMM的统计分布描述能力和SVM的推广泛化能力,将GMM和SVM分别识别... 针对特定音频事件识别中持续时间特别短的音频事件漏检概率高、识别速度较慢的问题,提出一种融合高斯混合模型(GMM)及支持向量机(SVM)的特定音频事件识别算法.该方法利用GMM的统计分布描述能力和SVM的推广泛化能力,将GMM和SVM分别识别的结果进行融合处理,以手枪、步枪、机关枪等10类以上枪声为实验数据,无需针对每种枪声生成相应的识别模板,仅需训练生成2个识别模板.实验结果表明,识别准确率达到92.71%.该方法模板数量少,不需要多次训练,算法复杂度较低,不仅便于应用而且可大幅提升识别效率. 展开更多
关键词 音频识别 高斯混合模型(gmm) 支持向量机(SVM) Mel频率倒谱系数(MFCC) 特定音频事件
在线阅读 下载PDF
基于MFCC和GMM的昆虫声音自动识别 被引量:16
17
作者 竺乐庆 张真 《昆虫学报》 CAS CSCD 北大核心 2012年第4期466-471,共6页
昆虫的运动、取食、鸣叫都会发出声音,这些声音存在种内相似性和种间差异性,因此可用来识别昆虫的种类。基于昆虫声音的昆虫种类自动检测技术对协助农业和林业从业人员方便地识别昆虫种类非常有意义。本研究采用了语音识别领域里的声音... 昆虫的运动、取食、鸣叫都会发出声音,这些声音存在种内相似性和种间差异性,因此可用来识别昆虫的种类。基于昆虫声音的昆虫种类自动检测技术对协助农业和林业从业人员方便地识别昆虫种类非常有意义。本研究采用了语音识别领域里的声音参数化技术来实现昆虫的声音自动鉴别。声音样本经预处理后,提取梅尔倒谱系数(Mel-frequency cepstrum coefficient,MFCC)作为特征,并用这些样本提取的MFCC特征集训练混合高斯模型(Gaussian mixturemodel,GMM)。最后用训练所得到的GMM对未知类别的昆虫声音样本进行分类。该方法在包含58种昆虫声音的样本库中进行了评估,取得了较高的识别正确率(平均精度为98.95%)和较理想的时间性能。该测试结果证明了基于MFCC和GMM的语音参数化技术可以用来有效地识别昆虫种类。 展开更多
关键词 昆虫 种类鉴定 声音处理 自动识别 梅尔倒谱系数 混合高斯模型
在线阅读 下载PDF
基于MFCC和双重GMM的鸟类识别方法 被引量:14
18
作者 王恩泽 何东健 《计算机工程与设计》 CSCD 北大核心 2014年第5期1868-1871,F0003,共5页
针对鸟类鸣声信号变化丰富和复杂的特点,提出一种基于MFCC和鸣叫、鸣唱声GMM模型的鸟类识别方法。该方法拟采用将鸟鸣声分为鸟叫声和鸟唱声的策略,分别提取其特征参数MFCC,提出双重GMM模型进行训练和识别。用8种鸟的鸣叫声和鸣唱声1077... 针对鸟类鸣声信号变化丰富和复杂的特点,提出一种基于MFCC和鸣叫、鸣唱声GMM模型的鸟类识别方法。该方法拟采用将鸟鸣声分为鸟叫声和鸟唱声的策略,分别提取其特征参数MFCC,提出双重GMM模型进行训练和识别。用8种鸟的鸣叫声和鸣唱声1077个样本进行实验,实验结果表明,双重GMM模型的识别率达到90%以上,与单一鸣声模型相比具有更高的识别率。 展开更多
关键词 鸟类识别 梅尔倒谱系数 鸣叫 鸣唱 双重高斯混合模型
在线阅读 下载PDF
一种基于GMM-DNN的说话人确认方法 被引量:2
19
作者 李敬阳 吴明辉 +1 位作者 王莉 王晓迪 《计算机应用与软件》 CSCD 2016年第12期131-135,共5页
针对说话人确认中话者建模问题,提出GMM-DNN的混合建模方法。该方法先通过GMM提取原始语音特征的统计特征,然后进一步通过DNN非线性映射的方式将统计特征变换到一个与说话人相关的线性可分空间。选用栈式自编码神经网络SAE(Stacked Auto... 针对说话人确认中话者建模问题,提出GMM-DNN的混合建模方法。该方法先通过GMM提取原始语音特征的统计特征,然后进一步通过DNN非线性映射的方式将统计特征变换到一个与说话人相关的线性可分空间。选用栈式自编码神经网络SAE(Stacked Auto-encoder Neutral Network)作为深度神经网络的基本模型。在注册阶段从已训练的DNN网络中抽取最后一层作为说话人模型,称为p-vector。测试阶段,通过抽取测试语音的p-vector与注册说话人p-vector进行匹配,从而作出判决;另外还详细说明了DNN隐藏层的作用。通过对NIST语料库的实验表明,采用GMM-DNN的说话人确认方法相对于传统的GMM-UBM话者建模方法具有一定的优势。 展开更多
关键词 说话人识别 深度神经网络 高斯混合模型 统计参数
在线阅读 下载PDF
基于GMM和聚类方法的储粮害虫声信号识别研究 被引量:6
20
作者 郭敏 张明真 《南京农业大学学报》 CAS CSCD 北大核心 2012年第6期44-48,共5页
通过储粮害虫声信号判断害虫活动情况对安全储粮意义重大。本研究采集了2种储粮害虫的活动声信号,首先提取声信号梅尔倒谱系数(MFCC)特征,然后以特征数据建立高斯混合模型(GMM),最后使用聚类方法对2种储粮害虫的4种活动声信号进行识别,... 通过储粮害虫声信号判断害虫活动情况对安全储粮意义重大。本研究采集了2种储粮害虫的活动声信号,首先提取声信号梅尔倒谱系数(MFCC)特征,然后以特征数据建立高斯混合模型(GMM),最后使用聚类方法对2种储粮害虫的4种活动声信号进行识别,识别率均达到80%以上。本研究验证了声检测法识别储粮害虫的可行性和有效性,具有较大的实际应用价值。 展开更多
关键词 高斯混合模型 梅尔倒谱系数 聚类 储粮害虫 声检测
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部