连续型储集层属性分布预测是油气储集层研究的重要内容。定量化的方法有各种插值技术和基于地质统计学的一些随机模拟技术,不同方法各有其优缺点。对基于GMRF(Gaussian Markov Random Fields)模型的随机模拟方法的原理和算法进行了较为...连续型储集层属性分布预测是油气储集层研究的重要内容。定量化的方法有各种插值技术和基于地质统计学的一些随机模拟技术,不同方法各有其优缺点。对基于GMRF(Gaussian Markov Random Fields)模型的随机模拟方法的原理和算法进行了较为详细的介绍,实际模型的运算过程及结果表明,该方法较为简捷,同时连续型属性作为空间随机变量的两个特征———结构性和随机性也得到了很好的反映。展开更多
将基于像素MRF分割方法拓展到基于地物目标几何约束的区域MRF分割,提出了一种基于区域和统计的纹理影像分割方法,其基本思想是利用Voronoi划分技术将影像域划分为若干子区域。在此基础上,采用二值高斯马尔科夫随机场(BGMRF,bivariate Ga...将基于像素MRF分割方法拓展到基于地物目标几何约束的区域MRF分割,提出了一种基于区域和统计的纹理影像分割方法,其基本思想是利用Voronoi划分技术将影像域划分为若干子区域。在此基础上,采用二值高斯马尔科夫随机场(BGMRF,bivariate Gaussian Markov random field)模型,静态随机场模型和Potts模型从邻域、区域及全局层次描述影像的纹理结构,并将该纹理结构模型纳入贝叶斯框架;依据贝叶斯定理构建纹理影像分割模型;利用metropolis-hastings(M-H)算法进行模型参数估计,并依据最大后验概率(MAP,maximum a posterior)准则进行优化,从而完成纹理影像分割。为了验证所提出方法的正确性,分别对合成纹理影像,真实纹理影像及遥感影像进行了分割实验,定性和定量的测试结果验证了提出方法的有效性、可靠性和准确性。展开更多
针对低阶马尔科夫随机场(Markov random field, MRF)模型难以有效表达自然图像中复杂的先验知识而造成误分割问题,提出一种基于多节点拓扑重叠测度高阶MRF模型(Higher-order MRF model with multi-node topological overlap measure, MT...针对低阶马尔科夫随机场(Markov random field, MRF)模型难以有效表达自然图像中复杂的先验知识而造成误分割问题,提出一种基于多节点拓扑重叠测度高阶MRF模型(Higher-order MRF model with multi-node topological overlap measure, MTOM-HMRF)的图像分割方法.首先,为描述图像局部区域内多像素蕴含的复杂空间拓扑结构信息,利用多节点拓扑重叠测度建立图像局部区域的高阶先验模型;其次,利用较大的局部区域包含更多的标签节点信息能力,基于Pairwise MRF模型建立基于局部区域的部分二阶Potts先验模型,提高分割模型的抗噪能力;再次,为有效描述观察图像场与其标签场的似然特征分布,研究利用局部区域内邻接像素的Hamming距离引入图像局部空间相关性,建立局部空间一致性约束的高斯混合分布;最后,基于MRF框架建立用于图像分割的多节点拓扑重叠测度高阶MRF模型,采用Gibbs采样算法对提出模型进行优化.实验结果表明,提出模型不仅能有效抵抗图像强噪声和复杂的纹理突变干扰,鲁棒性更好,而且具有更准确的图像分割结果.展开更多
文摘连续型储集层属性分布预测是油气储集层研究的重要内容。定量化的方法有各种插值技术和基于地质统计学的一些随机模拟技术,不同方法各有其优缺点。对基于GMRF(Gaussian Markov Random Fields)模型的随机模拟方法的原理和算法进行了较为详细的介绍,实际模型的运算过程及结果表明,该方法较为简捷,同时连续型属性作为空间随机变量的两个特征———结构性和随机性也得到了很好的反映。
文摘将基于像素MRF分割方法拓展到基于地物目标几何约束的区域MRF分割,提出了一种基于区域和统计的纹理影像分割方法,其基本思想是利用Voronoi划分技术将影像域划分为若干子区域。在此基础上,采用二值高斯马尔科夫随机场(BGMRF,bivariate Gaussian Markov random field)模型,静态随机场模型和Potts模型从邻域、区域及全局层次描述影像的纹理结构,并将该纹理结构模型纳入贝叶斯框架;依据贝叶斯定理构建纹理影像分割模型;利用metropolis-hastings(M-H)算法进行模型参数估计,并依据最大后验概率(MAP,maximum a posterior)准则进行优化,从而完成纹理影像分割。为了验证所提出方法的正确性,分别对合成纹理影像,真实纹理影像及遥感影像进行了分割实验,定性和定量的测试结果验证了提出方法的有效性、可靠性和准确性。
文摘针对低阶马尔科夫随机场(Markov random field, MRF)模型难以有效表达自然图像中复杂的先验知识而造成误分割问题,提出一种基于多节点拓扑重叠测度高阶MRF模型(Higher-order MRF model with multi-node topological overlap measure, MTOM-HMRF)的图像分割方法.首先,为描述图像局部区域内多像素蕴含的复杂空间拓扑结构信息,利用多节点拓扑重叠测度建立图像局部区域的高阶先验模型;其次,利用较大的局部区域包含更多的标签节点信息能力,基于Pairwise MRF模型建立基于局部区域的部分二阶Potts先验模型,提高分割模型的抗噪能力;再次,为有效描述观察图像场与其标签场的似然特征分布,研究利用局部区域内邻接像素的Hamming距离引入图像局部空间相关性,建立局部空间一致性约束的高斯混合分布;最后,基于MRF框架建立用于图像分割的多节点拓扑重叠测度高阶MRF模型,采用Gibbs采样算法对提出模型进行优化.实验结果表明,提出模型不仅能有效抵抗图像强噪声和复杂的纹理突变干扰,鲁棒性更好,而且具有更准确的图像分割结果.