With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
The particle filter (PF) is a flexible and powerful sequen- tial Monte Carlo (SMC) technique capable of modeling nonlinear, non-Gaussian, and nonstationary dynamical systems. However, the generic PF suffers from p...The particle filter (PF) is a flexible and powerful sequen- tial Monte Carlo (SMC) technique capable of modeling nonlinear, non-Gaussian, and nonstationary dynamical systems. However, the generic PF suffers from particle degeneracy and sample im- poverishment, which greatly affects its performance for nonlinear, non-Gaussian tracking problems. To deal with those issues, an improved PF is proposed. The algorithm consists of a PF that uses an immune adaptive Gaussian mixture model (IAGM) based immune algorithm to re-approximate the posterior density. At the same time, three immune antibody operators are embed in the new filter. Instead of using a resample strategy, the newest obser- vation and conditional likelihood are integrated into those immune antibody operators to update the particles, which can further im- prove the diversity of particles, and drive particles toward their close local maximum of the posterior probability. The improved PF algorithm can produce a closed-form expression for the posterior state distribution. Simulation results show the proposed algorithm can maintain the effectiveness and diversity of particles and avoid sample impoverishment, and its performance is superior to several PFs and Kalman filters.展开更多
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.
基金supported by the National Natural Science Foundation of China(6127327561402517+3 种基金61573375)the Open Research Fund of State Key Laboratory of Astronautic Dynamics(2012ADL-DW0202)the Natural Science Foundation of Shaanxi Province of China(2013JQ8035)the China Postdoctoral Science Foundation(2013M542331)
文摘The particle filter (PF) is a flexible and powerful sequen- tial Monte Carlo (SMC) technique capable of modeling nonlinear, non-Gaussian, and nonstationary dynamical systems. However, the generic PF suffers from particle degeneracy and sample im- poverishment, which greatly affects its performance for nonlinear, non-Gaussian tracking problems. To deal with those issues, an improved PF is proposed. The algorithm consists of a PF that uses an immune adaptive Gaussian mixture model (IAGM) based immune algorithm to re-approximate the posterior density. At the same time, three immune antibody operators are embed in the new filter. Instead of using a resample strategy, the newest obser- vation and conditional likelihood are integrated into those immune antibody operators to update the particles, which can further im- prove the diversity of particles, and drive particles toward their close local maximum of the posterior probability. The improved PF algorithm can produce a closed-form expression for the posterior state distribution. Simulation results show the proposed algorithm can maintain the effectiveness and diversity of particles and avoid sample impoverishment, and its performance is superior to several PFs and Kalman filters.