期刊文献+
共找到212篇文章
< 1 2 11 >
每页显示 20 50 100
Fine quantitative characterization of high-H2S gas reservoirs under the influence of liquid sulfur deposition and adsorption
1
作者 LI Tong MA Yongsheng +3 位作者 ZENG Daqian LI Qian ZHAO Guang SUN Ning 《Petroleum Exploration and Development》 SCIE 2024年第2期416-429,共14页
In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-p... In order to clarify the influence of liquid sulfur deposition and adsorption to high-H2S gas reservoirs,three types of natural cores with typical carbonate pore structures were selected for high-temperature and high-pressure core displacement experiments.Fine quantitative characterization of the cores in three steady states(original,after sulfur injection,and after gas flooding)was carried out using the nuclear magnetic resonance(NMR)transverse relaxation time spectrum and imaging,X-ray computer tomography(CT)of full-diameter cores,basic physical property testing,and field emission scanning electron microscopy imaging.The loss of pore volume caused by sulfur deposition and adsorption mainly comes from the medium and large pores with sizes bigger than 1000μm.Liquid sulfur has a stronger adsorption and deposition ability in smaller pore spaces,and causes greater damage to reservoirs with poor original pore structures.The pore structure of the three types of carbonate reservoirs shows multiple fractal characteristics.The worse the pore structure,the greater the change of internal pore distribution caused by liquid sulfur deposition and adsorption,and the stronger the heterogeneity.Liquid sulfur deposition and adsorption change the pore size distribution,pore connectivity,and heterogeneity of the rock,which further changes the physical properties of the reservoir.After sulfur injection and gas flooding,the permeability of TypeⅠreservoirs with good physical properties decreased by 16%,and that of TypesⅡandⅢreservoirs with poor physical properties decreased by 90%or more,suggesting an extremely high damage.This indicates that the worse the initial physical properties,the greater the damage of liquid sulfur deposition and adsorption.Liquid sulfur is adsorbed and deposited in different types of pore space in the forms of flocculence,cobweb,or retinitis,causing different changes in the pore structure and physical property of the reservoir. 展开更多
关键词 high-H2S gas reservoir liquid sulfur adsorption and deposition pore structure physical property reservoir characterization
在线阅读 下载PDF
How do quantum numbers generally vary in the adiabatic transformation of an ideal gas?
2
作者 T. Yarman A. L. Kholmetskii 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第10期305-311,共7页
We continue to analyse the known law of adiabatic transformation for an ideal gas PV5/3=Constant, where P isthe pressure and V is the volume, and following the approach of non-relativistic quantum mechanics which we s... We continue to analyse the known law of adiabatic transformation for an ideal gas PV5/3=Constant, where P isthe pressure and V is the volume, and following the approach of non-relativistic quantum mechanics which we suggested in a previous work (Yarman et al. 2010 Int. J. Phys. Sci. 5 1524). We explicitly determine the constant for the general parallelepiped geometry of a container. We also disclose how the quantum numbers associated with molecules of an ideal gas vary through an arbitrary adiabatic transformation. Physical implications of the results obtained are discussed. 展开更多
关键词 ideal gas adiabatic transformation non-relativistic quantum mechanics
在线阅读 下载PDF
Constructing ether-rich and carboxylate hydrogen bonding sites in protic ionic liquids for efficient and simultaneous membrane separation of H_(2)S and CO_(2) from CH_(4)
3
作者 Ping Zhang Xingyun Ma +3 位作者 Zhuoheng Tu Xiaomin Zhang Xingbang Hu Youting Wu 《Green Energy & Environment》 2025年第3期560-572,共13页
Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-... Removing H_(2)S and CO_(2)is of great significance for natural gas purification.With excellent gas affinity and tunable structure,ionic liquids(ILs) have been regarded as nontrivial candidates for fabricating polymer-based membranes.Herein,we firstly reported the incorporation of protic ILs (PILs) having ether-rich and carboxylate sites (ECPILs) into poly(ether-block-amide)(Pebax) matrix for efficient separation H_(2)S and CO_(2)from CH_(4).Notably,the optimal permeability of H_(2)S reaches up to 4310 Barrer (40C,0.50 bar) in Pebax/ECPIL membranes,along with H_(2)S/CH_(4)and (H_(2)StCO_(2))/CH_(4)selectivity of 97.7 and 112.3,respectively.These values are increased by 1125%,160.8%and 145.9%compared to those in neat Pebax membrane.Additionally,the solubility and diffusion coefficients of the gases were measured,demonstrating that ECPIL can simultaneously strengthen the dissolution and diffusion of H_(2)S and CO_(2),thus elevating the permeability and permselectivity.By using quantum chemical calculations and FT-IR spectroscopy,the highly reversible multi-site hydrogen bonding interaction between ECPILs and H_(2)S was revealed,which is responsible for the fast permeation of H_(2)S and good selectivity.Furthermore,H_(2)S/CO_(2)/CH_(4)(3/3/94 mol/mol) ternary mixed gas can be efficiently and stably separated by Pebax/ECPIL membrane for at least 100 h.Overall,this work not only illustrates that PILs with ether-rich and carboxylate hydrogen bonding sites are outstanding materials for simultaneous removal of H_(2)S and CO_(2),but may also provide a novel insight into the design of membrane materials for natural gas upgrading. 展开更多
关键词 H_(2)S Protic ionic liquid Multi-site hydrogen bonding interaction Membrane separation Natural gas purification
在线阅读 下载PDF
The Future of Gas to Liquids as a Gas Monetisation Option 被引量:8
4
作者 Hock Cheng Heng Suhaili Idrus 《Journal of Natural Gas Chemistry》 CAS CSCD 2004年第2期63-70,共8页
The paper introduces gas to liquids (GTL) as a monetising option from a technology, marketing and project perspective. GTL is complementary to LNG and pipelines. At the same time, using natural gas as a source for fue... The paper introduces gas to liquids (GTL) as a monetising option from a technology, marketing and project perspective. GTL is complementary to LNG and pipelines. At the same time, using natural gas as a source for fuels in the form of GTL helps countries around the world to diversify their energy supplies. Furthermore, gas-based products are inherently cleaner than oil products. Shell's proprietary GTL technology or SMDS (Shell Middle Distillates Synthesis), is discussed in some detail. The paper also covers the challenges for successful implementation of GTL projects and why Shell is well positioned to take a lead in the industry on the basis of its long standing and broad experience in GTL research, plant operations, marketing and excellent track record in mega projects in the last thirty years. Shell's commitment to GTL is best demonstrated by the recent signing of a Heads of Agreement with Qatar Petroleum for the construction of the world's largest GTL plant. A key success factor is Shell's experience with marketing quantities of high quality GTL products from its 12,500 barrels per day plant at Bintulu, Malaysia since 1993. Further marketing opportunities will arise when new GTL capacity comes on-stream in the middle east when more quantities will become available to bulk users. Amongst the most interesting market will be automotive transportation, where clean GTL fuels can be positioned as an 'alternative fuel beyond oil' providing energy security to host countries. Shell is actively engaging with a number of regulators, automotive companies and governments worldwide including China, to demonstrate the performance of GTL and its cost effectiveness in reducing local emissions. An added benefit is that GTL can use existing infrastructure and requires no investment. Finally, the paper briefly discusses the coal to liquids (CTL) process as an alternative route to produce high quality GTL products and the key issues relating to the process. 展开更多
关键词 gas to liquids (GTL) coal to liquids (CTL) liquefied natural gas (LNG)
在线阅读 下载PDF
A liquid loading prediction method of gas pipeline based on machine learning 被引量:5
5
作者 Bing-Yuan Hong Sheng-Nan Liu +5 位作者 Xiao-Ping Li Di Fan Shuai-Peng Ji Si-Hang Chen Cui-Cui Li Jing Gong 《Petroleum Science》 SCIE CAS CSCD 2022年第6期3004-3015,共12页
The liquid loading is one of the most frequently encountered phenomena in the transportation of gas pipeline,reducing the transmission efficiency and threatening the flow assurance.However,most of the traditional mech... The liquid loading is one of the most frequently encountered phenomena in the transportation of gas pipeline,reducing the transmission efficiency and threatening the flow assurance.However,most of the traditional mechanism models are semi-empirical models,and have to be resolved under different working conditions with complex calculation process.The development of big data technology and artificial intelligence provides the possibility to establish data-driven models.This paper aims to establish a liquid loading prediction model for natural gas pipeline with high generalization ability based on machine learning.First,according to the characteristics of actual gas pipeline,a variety of reasonable combinations of working conditions such as different gas velocity,pipe diameters,water contents and outlet pressures were set,and multiple undulating pipeline topography with different elevation differences was established.Then a large number of simulations were performed by simulator OLGA to obtain the data required for machine learning.After data preprocessing,six supervised learning algorithms,including support vector machine(SVM),decision tree(DT),random forest(RF),artificial neural network(ANN),plain Bayesian classification(NBC),and K nearest neighbor algorithm(KNN),were compared to evaluate the performance of liquid loading prediction.Finally,the RF and KNN with better performance were selected for parameter tuning and then used to the actual pipeline for liquid loading location prediction.Compared with OLGA simulation,the established data-driven model not only improves calculation efficiency and reduces workload,but also can provide technical support for gas pipeline flow assurance. 展开更多
关键词 liquid loading Data-driven method Machine learning gas pipeline Multiphase flow
在线阅读 下载PDF
Ensemble-based optimization of hydraulically fractured horizontal well placement in shale gas reservoir through Hough transform parameterization 被引量:3
6
作者 Liang Xue Shao-Hua Gu +2 位作者 Xie-Er Jiang Yue-Tian Liu Chen Yang 《Petroleum Science》 SCIE CAS CSCD 2021年第3期839-851,共13页
Shale gas reservoirs have been successfully developed due to the advancement of the horizontal well drilling and multistage hydraulic fracturing techniques.However,the optimization design of the horizontal well drilli... Shale gas reservoirs have been successfully developed due to the advancement of the horizontal well drilling and multistage hydraulic fracturing techniques.However,the optimization design of the horizontal well drilling,hydraulic fracturing,and operational schedule is a challenging problem.An ensemble-based optimization method(EnOpt)is proposed here to optimize the design of the hydraulically fractured horizontal well in the shale gas reservoir.The objective is to maximize the net present value(NPV)which requires a simulation model to predict the cumulative shale gas production.To accurately describe the geometry of the hydraulic fractures,the embedded discrete fracture modeling method(EDFM)is used to construct the shale gas simulation model.The efects of gas absorption,Knudsen difusion,natural and hydraulic fractures,and gas-water two phase fow are considered in the shale gas production system.To improve the parameter continuity and Gaussianity required by the EnOpt method,the Hough transformation parameterization is used to characterize the horizontal well.The results show that the proposed method can efectively optimize the design parameters of the hydraulically fractured horizontal well,and the NPV can be improved greatly after optimization so that the design parameters can approach to their optimal values. 展开更多
关键词 Shale gas Ensemble optimization Embedded discrete fracture model Hough transformation
在线阅读 下载PDF
A Multi-Gap Multi-Channel Gas Switch for the Linear Transformer Driver 被引量:3
7
作者 刘轩东 梁天学 +4 位作者 孙凤举 姜晓峰 李佳 孙福 邱爱慈 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第6期725-729,共5页
A multi-gap and multi-channel gas switch with convexo-convex discal planet electrodes was designed and investigated. Eight gaps are formed in series by a trigger electrode, six intermediate electrodes and two high vol... A multi-gap and multi-channel gas switch with convexo-convex discal planet electrodes was designed and investigated. Eight gaps are formed in series by a trigger electrode, six intermediate electrodes and two high voltage electrodes with a uniform gap length of 5 ram. The self breakdown and triggered breakdown performance of the switch are reported. Both the delay time and jitter decrease with the increase in the trigger voltage, switching coefficient and the decrease in the trigger isolating resistor. The delay time of the switch is about 40 ns, and the jitter is less than 2 ns when charged with 4-85 kV and triggered by a voltage pule of -75 kV. The inductance of the switch is about 30 nH. 展开更多
关键词 multi-gap multi-channel gas spark closing switch linear transformer driver delay time JITTER
在线阅读 下载PDF
Retrieval algorithm of quantitative analysis of passive Fourier transform infrared (FTRD) remote sensing measurements of chemical gas cloud from measuring the transmissivity by passive remote Fourier transform infrared 被引量:3
8
作者 刘志明 刘文清 +4 位作者 高闽光 童晶晶 张天舒 徐亮 魏秀丽 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第11期4184-4192,共9页
Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of conce... Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer-Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds. 展开更多
关键词 passive remote measurement Fourier transform infrared (FTIR) gas cloud sensing concentration retrieval
在线阅读 下载PDF
Optical Diagnostics of Multi-Gap Gas Switches for Linear Transformer Drivers 被引量:1
9
作者 盛亮 李阳 +7 位作者 孙铁平 丛培天 张美 彭博栋 赵吉祯 岳志勤 魏福利 袁媛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第7期677-682,共6页
The trigger characteristics of a multi-gap gas switch with double insulating layers,a square-groove electrode supporter and a UV pre-ionizing structure are investigated aided by a high sensitivity fiber-bundle array d... The trigger characteristics of a multi-gap gas switch with double insulating layers,a square-groove electrode supporter and a UV pre-ionizing structure are investigated aided by a high sensitivity fiber-bundle array detector, a UV fiber detector, and a framing camera, in addition to standard electrical diagnostics. The fiber-bundle-array detector is used to track the turn-on sequence of each electrode gap at a timing precision of 0.6 ns. Each fiber bundle, including five fibers with different azimuth angles, aims at the whole emitting area of each electrode gap and is fed to a photomultiplier tube. The UV fiber detector with a spectrum response of 260-320 nm,including a fused-quartz fiber of 200 μm in diameter and a solar-blinded photomultiplier tube, is adopted to study the effect of UV pre-ionizing on trigger characteristics. The framing camera,with a capacity of 4 frames per shot and an exposure time of 5 ns, is employed to capture the evolution of channel arcs. Based on the turn-on light signal of each electrode gap, the breakdown delay is divided into statistical delay and formative delay. A decrease in both of them, a smaller switch jitter and more channel arcs are observed with lower gas pressure. An increase in trigger voltage can reduce the statistical delay and its jitter, while higher trigger voltage has a relatively small influence on the formative delay and the number of channel arcs. With the UV pre-ionizing structure at 0.24 MPa gas pressure and 60 kV trigger voltage, the statistical delay and its jitter can be reduced by 1.8 ns and 0.67 ns, while the formative delay and its jitter can only be reduced by 0.5 ns and 0.25 ns. 展开更多
关键词 optical diagnostics multi-gap gas switches linear transformer driver
在线阅读 下载PDF
Degradation of antibiotic contaminants from water by gas–liquid underwater discharge plasma 被引量:1
10
作者 卢伏 周建 吴征威 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期161-170,共10页
Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracyclin... Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracycline(TC),and norfloxacin(NOR),to address the growing problem of antibiotic contaminants in water.The effects of various parameters on the antibiotic degradation efficiency were evaluated,including the discharge gas type and flow rate,the initial concentration and pH of the solution,and the discharge voltage.Under the optimum parameter configuration,the average removal rate of the three antibiotics was 54.0% and the energy yield was 8.9 g(kW·h)-1after 5 min treatment;the removal efficiency was 96.5% and the corresponding energy yield was4.0 g(kW·h)-1 after 20 min treatment.Reactive substance capture and determination experiments indicated that ·OH and O3 played a vital role in the decomposition of SDZ and NOR,but the role of reactive substances in TC degradation was relatively less significant. 展开更多
关键词 antibiotic contamination non-thermal plasma gasliquid underwater discharge degradation efficiency plasma reactive substances
在线阅读 下载PDF
Process intensification in gas/liquid/solid reaction in trickle bed reactors: A review 被引量:1
11
作者 Jing Tan Ya-Ni Ji +1 位作者 Wen-Sheng Deng Yue-Feng Su 《Petroleum Science》 SCIE CAS CSCD 2021年第4期1203-1218,共16页
As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their fl... As an important form of reactors for gas/liquid/solid catalytic reaction,trickle bed reactors (TBRs) are widely applied in petroleum industry,biochemical,fine chemical and pharmaceutical industries because of their flexibility,simplicity of operation and high throughput.However,TBRs also show inefficient production and hot pots caused by non-uniform fluid distribution and incomplete wetting of the catalyst,which limit their further application in chemical industry.Also,process intensification in TBRs is necessary as the decrease in quality of processed crude oil,caused by increased exploitation depths,and more restrictive environmental regulations and emission standards for industry,caused by increased environment protection consciousness.In recent years,lots of strategies for process intensification in TBRs have been proposed to improve reaction performance to meet the current and future demands of chemical industry from the environmental and economic perspective.This article summarizes the recent progress in techniques for intensifying gas/liquid/solid reaction in TBRs and application of intensified TBRs in petroleum industry. 展开更多
关键词 Trickle bed reactor Process intensification gas/liquid/solid catalytic reaction Petroleum industry
在线阅读 下载PDF
Phase behavior of gas condensate in porous media using real-time computed tomography scanning 被引量:2
12
作者 Wen-Long Jing Lei Zhang +5 位作者 Ai-Fen Li Jun-Jie Zhong Hai Sun Yong-Fei Yang Yu-Long Cheng Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1032-1043,共12页
The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a samp... The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs. 展开更多
关键词 gas condensate Pressure depletion Real-time micro-computed tomography scanning Distribution of condensate liquid
在线阅读 下载PDF
Gas liquid cylindrical cyclone flow regime identification using machine learning combined with experimental mechanism explanation
13
作者 Zhao-Ming Yang Yu-Xuan He +6 位作者 Qi Xiang Enrico Zio Li-Min He Xiao-Ming Luo Huai Su Ji Wang Jin-Jun Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期540-558,共19页
The flow regimes of GLCC with horizon inlet and a vertical pipe are investigated in experiments,and the velocities and pressure drops data labeled by the corresponding flow regimes are collected.Combined with the flow... The flow regimes of GLCC with horizon inlet and a vertical pipe are investigated in experiments,and the velocities and pressure drops data labeled by the corresponding flow regimes are collected.Combined with the flow regimes data of other GLCC positions from other literatures in existence,the gas and liquid superficial velocities and pressure drops are used as the input of the machine learning algorithms respectively which are applied to identify the flow regimes.The choosing of input data types takes the availability of data for practical industry fields into consideration,and the twelve machine learning algorithms are chosen from the classical and popular algorithms in the area of classification,including the typical ensemble models,SVM,KNN,Bayesian Model and MLP.The results of flow regimes identification show that gas and liquid superficial velocities are the ideal type of input data for the flow regimes identification by machine learning.Most of the ensemble models can identify the flow regimes of GLCC by gas and liquid velocities with the accuracy of 0.99 and more.For the pressure drops as the input of each algorithm,it is not the suitable as gas and liquid velocities,and only XGBoost and Bagging Tree can identify the GLCC flow regimes accurately.The success and confusion of each algorithm are analyzed and explained based on the experimental phenomena of flow regimes evolution processes,the flow regimes map,and the principles of algorithms.The applicability and feasibility of each algorithm according to different types of data for GLCC flow regimes identification are proposed. 展开更多
关键词 gas liquid cylindrical cyclone Machine learning Flow regimes identification Mechanism explanation ALGORITHMS
在线阅读 下载PDF
ASTUDYONTHEDEVELOPMENTOFTHENUMERICALMETHODTOTRACKTHEMULTI┐FREESURFACESINLIQUID┐GASPHASEFLOW
14
作者 Hong Chul Chung Aerospace Engineering Department, Hankuk Aviation UniversityKoyang,Kyunggi do, Korea 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1996年第1期4-8,共5页
This paper is concerned with a remedy for interface smearing,which is usable when fixed (i.e. non moving and so non conforming) grids are employed. It is simple to employ and has been found to be rather effective. T... This paper is concerned with a remedy for interface smearing,which is usable when fixed (i.e. non moving and so non conforming) grids are employed. It is simple to employ and has been found to be rather effective. The paper explains its principle, describes how it has been implemented and presents some results obtained with its assistance. The results are compared both with those of earlier methods of interface motion calculation and with experimental data. 展开更多
关键词 fluid flow incompressible flow MODELLING liquid gas phase flow
在线阅读 下载PDF
Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode
15
作者 Hafiz Imran Ahmad QAZI Muhammad Ajmal KHAN Jianjun HUANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第2期17-29,共13页
A discharge ignited by an AC power source in contact with deionized water as one of the electrodes is investigated.Immediately after initiation,the discharge exhibits a unique phenomenon:the gas-phase discharge is ext... A discharge ignited by an AC power source in contact with deionized water as one of the electrodes is investigated.Immediately after initiation,the discharge exhibits a unique phenomenon:the gas-phase discharge is extended into the liquid.Later,a cone-like structure is observed at the liquid surface.Synchronous monitoring of current–voltage characteristics and liquid properties versus time suggests that the discharge shapes are functions of the liquid properties.The spatio-temporal profiles indicate the potential effects of water,ambient air impurities,and metastable argon on the discharge chemistry.This becomes more obvious near the liquid surface due to increasing production of various transient reactive species such as centerdot OH and NO centerdot.Moreover,it is revealed that thermalization of the rotational population distributions of the rotational states(N′⩽6,J′⩽13/2)in the Q1 branch of the OH(A2Σ+,υ′=0→X2Π3/2,υ′′=0)band ro-vibrational system is influenced by the humid environment near the liquid surface.In addition,the transient behaviors of instantaneous concentrations of long-lived reactive species(LRS)such as H2O2,NO−2,and NO−3 are observed with lengthening the discharge time.The production of multiple transient and LRS proposes AC excited gas–liquid argon discharge as a potential applicant in industrial wastewater cleaning,clinical medicine,and agriculture. 展开更多
关键词 gasliquid interface discharge emission patterns rotational temperature plasma chemistry
在线阅读 下载PDF
A new model for predicting the critical liquid-carrying velocity in inclined gas wells
16
作者 WANG Wujie CUI Guomin +1 位作者 WEI Yaoqi PAN Jie 《Petroleum Exploration and Development》 CSCD 2021年第5期1218-1226,共9页
Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wa... Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wall,the influence of the change of the gas-liquid interface configuration on the potential energy,kinetic energy and surface free energy of the two-phase system per unit length of the tube is investigated,and a new model for calculating the gas-liquid distribution at critical conditions is developed by using the principle of minimum energy.Considering the influence of the inclination angle,the calculation model of interfacial friction factor is established,and finally closed the governing equations.The interface shape is more vulnerable to wettability and surface tension at a low liquid holdup,resulting in a curved interface configuration.The interface is more curved when the smaller is the pipe diameter,or the smaller the liquid holdup,or the smaller the deviation angle,or the greater gas velocity,or the greater the gas density.The critical liquid-carrying velocity increases nonlinearly and then decreases with the increase of inclination angle.The inclination corresponding to the maximum critical liquid-carrying velocity increases with the increase of the diameter of the wellbore,and it is also affected by the fluid properties of the gas phase and liquid phase.The mean relative errors for critical liquid-carrying velocity and critical pressure gradient are 1.19%and 3.02%,respectively,and the misclassification rate is 2.38%in the field trial,implying the new model can provide a valid judgement on the liquid loading in inclined gas wells. 展开更多
关键词 inclined gas well gas-liquid phase distribution interfacial friction factor critical liquid-carrying velocity bottom-hole liquid loading
在线阅读 下载PDF
Influence of vacuoles with gas–liquid inclusions on the thermobaric destruction conditions of natural quartz under dynamic heating in an RF-TICP torch system
17
作者 苗龙 聂明卿 +7 位作者 Yuri Mihailovich GRISHIN 王晓宇 朱政羲 宋家辉 梁福文 何梓豪 田丰 王宁飞 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第4期138-147,共10页
In the present work,the turbulent mixing process of a polydisperse quartz particle flow with a plasma stream generated by a radio-frequency(RF)inductively coupled plasma torch was numerically studied.The thermobaric s... In the present work,the turbulent mixing process of a polydisperse quartz particle flow with a plasma stream generated by a radio-frequency(RF)inductively coupled plasma torch was numerically studied.The thermobaric stress in the quartz particles under dynamic heating in a heterogeneous plasma flow was determined by a two-stage approximation approach.The effect of the presence of vacuoles in natural quartz on the particle thermobaric destruction conditions was studied.It was found that the equivalent thermal and baric stresses in quartz particles may significantly increase in the presence of vacuoles within a small gas volume fraction.The influence of the regime and energetic working conditions of an RF inductively coupled plasma torch system on the particle thermobaric destruction conditions was examined,and a recommendation was given to promote the degree of thermobaric destruction of quartz particles,which is of substantial importance for improving the overall enrichment efficiency of quartz concentrates. 展开更多
关键词 high purity quartz dynamic heating vacuole with gasliquid inclusions thermobaric destruction radio-frequency inductively coupled plasma torch
在线阅读 下载PDF
ENI, IFP Jointly Develop Technology to Convert Gas into Liquid Fuels
18
《China Oil & Gas》 CAS 2001年第4期29-,共1页
关键词 IFP Jointly Develop Technology to Convert gas into liquid Fuels ENI
在线阅读 下载PDF
A unified fractional flow framework for predicting the liquid holdup in two-phase pipe flows
19
作者 Fuqiao Bai Yingda Lu Mukul M.Sharma 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2614-2624,共11页
Two-phase pipe flow occurs frequently in oil&gas industry,nuclear power plants,and CCUS.Reliable calculations of gas void fraction(or liquid holdup)play a central role in two-phase pipe flow models.In this paper w... Two-phase pipe flow occurs frequently in oil&gas industry,nuclear power plants,and CCUS.Reliable calculations of gas void fraction(or liquid holdup)play a central role in two-phase pipe flow models.In this paper we apply the fractional flow theory to multiphase flow in pipes and present a unified modeling framework for predicting the fluid phase volume fractions over a broad range of pipe flow conditions.Compared to existing methods and correlations,this new framework provides a simple,approximate,and efficient way to estimate the phase volume fraction in two-phase pipe flow without invoking flow patterns.Notably,existing correlations for estimating phase volume fraction can be transformed and expressed under this modeling framework.Different fractional flow models are applicable to different flow conditions,and they demonstrate good agreement against experimental data within 5%errors when compared with an experimental database comprising of 2754 data groups from 14literature sources,covering various pipe geometries,flow patterns,fluid properties and flow inclinations.The gas void fraction predicted by the framework developed in this work can be used as inputs to reliably model the hydraulic and thermal behaviors of two-phase pipe flows. 展开更多
关键词 Pipe fractional flow liquid holdup Multiphase pipe flow gas void fraction
在线阅读 下载PDF
Low-amplitude structure recognition method based on non-subsampled contourlet transform
20
作者 Fen Lyu Xing-Ye Liu +3 位作者 Li Chen Chao Li Jie Zhou Huai-Lai Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3062-3078,共17页
Currently, horizontal well fracturing is indispensable for shale gas development. Due to the variable reservoir formation morphology, the drilling trajectory often deviates from the high-quality reservoir,which increa... Currently, horizontal well fracturing is indispensable for shale gas development. Due to the variable reservoir formation morphology, the drilling trajectory often deviates from the high-quality reservoir,which increases the risk of fracturing. Accurately recognizing low-amplitude structures plays a crucial role in guiding horizontal wells. However, existing methods have low recognition accuracy, and are difficult to meet actual production demand. In order to improve the drilling encounter rate of high-quality reservoirs, we propose a method for fine recognition of low-amplitude structures based on the non-subsampled contourlet transform(NSCT). Firstly, the seismic structural data are analyzed at multiple scales and directions using the NSCT and decomposed into low-frequency and high-frequency structural components. Then, the signal of each component is reconstructed to eliminate the low-frequency background of the structure, highlight the structure and texture information, and recognize the low-amplitude structure from it. Finally, we combined the drilled horizontal wells to verify the low-amplitude structural recognition results. Taking a study area in the west Sichuan Basin block as an example, we demonstrate the fine identification of low-amplitude structures based on NSCT. By combining the variation characteristics of logging curves, such as organic carbon content(TOC), natural gamma value(GR), etc., the real structure type is verified and determined, and the false structures in the recognition results are checked. The proposed method can provide reliable information on low-amplitude structures for optimizing the trajectory of horizontal wells. Compared with identification methods based on traditional wavelet transform and curvelet transform, NSCT enhances the local features of low-amplitude structures and achieves finer mapping of low-amplitude structures, showing promise for application. 展开更多
关键词 Shale gas Low-amplitude structure Low-frequency background Non-subsampled contourlet transform Horizontal well verification
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部