With research on the carrier phase synchronization and symbol synchronization algorithm of demodulation module, a synchronization circuit system is designed for GPS software receiver based on field programmable gate a...With research on the carrier phase synchronization and symbol synchronization algorithm of demodulation module, a synchronization circuit system is designed for GPS software receiver based on field programmable gate array (FPGA), and a series of experiment is done on the hardware platform. The result shows the all-digital synchronization and demodulation of GPS intermediate frequency (IF) signal can be realized and applied in embedded real-time GPS software receiver system. It is verified that the decision-directed joint tracking algorithm of carrier phase and symbol timing for received signals from GPS is reasonable. In addition, the loop works steadily and can be used for receiving GPS signals using synchronous demodulation. The synchronization circuit for GPS software receiver designed based on FPGA has the features of low cost, miniaturization, low power and real-time. Surely, it will become one of the development directions for GPS and even GNSS embedded real-time software receiver.展开更多
Acquisition time of global position system (GPS) receiver, which is the main factor contributes to time to first fix (TTFF), can be shortened by estimating the Doppler frequency shift through external inertial nav...Acquisition time of global position system (GPS) receiver, which is the main factor contributes to time to first fix (TTFF), can be shortened by estimating the Doppler frequency shift through external inertial navigation system (INS) information and almanac data and reducing the searching area. The traditional fast acquisition is analyzed, the fast acquisition of the GPS receiver aided is presented by INS information, and the signal is fine captured by spectrum zooming. Then the algorithm is simulated by sampled GPS intermediate frequency (IF) signal and the result verifies that this acquisition can dramatically improve the capability of GPS receiver and reduce its acquisition time.展开更多
In this paper, novel mathematical expressions are derived for the Global Positioning System (GPS) receiver interference tolerance in the presence of different types of interference signals such as: continuous wave int...In this paper, novel mathematical expressions are derived for the Global Positioning System (GPS) receiver interference tolerance in the presence of different types of interference signals such as: continuous wave interference, narrowband interference, partial band interference, broadband interference, match spectrum interference and pulse interference. Also, in this paper the mean time to loss lock is determined in order to analyse the mentioned interferences effect on the GPS receiver. These derived analytical expressions are validated with the aid of extensive simulation experiments.展开更多
基金supported in part by the National High Technology Research and Development Program of China (863 Program)(2006AA12A108)CSC International Scholarship (2008104769)
文摘With research on the carrier phase synchronization and symbol synchronization algorithm of demodulation module, a synchronization circuit system is designed for GPS software receiver based on field programmable gate array (FPGA), and a series of experiment is done on the hardware platform. The result shows the all-digital synchronization and demodulation of GPS intermediate frequency (IF) signal can be realized and applied in embedded real-time GPS software receiver system. It is verified that the decision-directed joint tracking algorithm of carrier phase and symbol timing for received signals from GPS is reasonable. In addition, the loop works steadily and can be used for receiving GPS signals using synchronous demodulation. The synchronization circuit for GPS software receiver designed based on FPGA has the features of low cost, miniaturization, low power and real-time. Surely, it will become one of the development directions for GPS and even GNSS embedded real-time software receiver.
文摘Acquisition time of global position system (GPS) receiver, which is the main factor contributes to time to first fix (TTFF), can be shortened by estimating the Doppler frequency shift through external inertial navigation system (INS) information and almanac data and reducing the searching area. The traditional fast acquisition is analyzed, the fast acquisition of the GPS receiver aided is presented by INS information, and the signal is fine captured by spectrum zooming. Then the algorithm is simulated by sampled GPS intermediate frequency (IF) signal and the result verifies that this acquisition can dramatically improve the capability of GPS receiver and reduce its acquisition time.
文摘In this paper, novel mathematical expressions are derived for the Global Positioning System (GPS) receiver interference tolerance in the presence of different types of interference signals such as: continuous wave interference, narrowband interference, partial band interference, broadband interference, match spectrum interference and pulse interference. Also, in this paper the mean time to loss lock is determined in order to analyse the mentioned interferences effect on the GPS receiver. These derived analytical expressions are validated with the aid of extensive simulation experiments.