文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例...文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例应用结果表明,其建模精度和预测效果均优于无偏GM(1,1)模型和离散GM(1,1)模型。为将适宜建模序列拓展至近似非齐次指数序列和季节波动序列,同时保留幂函数变换可以有效降低背景值误差对建模精度影响的优势,将幂函数变换与平移变换相结合构建了PFNGM(1,1)模型,将幂函数变换与季节性GM(1,1)模型(SGM(1,1)模型)相结合构建了PFSGM(1,1)模型。实例应用结果表明,PFNGM(1,1)模型的建模精度和预测效果均优于背景值改进的NGM(1,1, k )模型和ONGM(1,1, k,c )模型,PFSGM(1,1)模型的建模精度和预测效果均优于SGM(1,1)模型,验证了两种模型的有效性。展开更多
Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study th...Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study the modeling mechanism of GM (1,1), which decomposes the modeling data matrix into raw data transformation matrix, accumulated generating operation matrix and background value selection matrix. The changes of these three matrices are the essential reasons affecting the modeling and the accuracy of GM (1,1). Finally, the paper proposes a generalization grey model GGM (1,1), which is a extended form of GM (1,1) and also a unified form of model GM (1,1), model GM (1,1,α), stage grey model, hopping grey model, generalized accumulated model, strengthening operator model, weakening operator model and unequal interval model. And the theory and practical significance of the extended model is analyzed.展开更多
The area of well rice in the sanjiang Plain is incresing recently.At the same time,the groundwater resource has been wasted.Thus,the resource of groundwater is shortening.More and more area appears the phenomenon of ...The area of well rice in the sanjiang Plain is incresing recently.At the same time,the groundwater resource has been wasted.Thus,the resource of groundwater is shortening.More and more area appears the phenomenon of “hanger pump” and “funnel”.According to these problems the paper adopts Chuang Ye farm as the research base,through handle the data of groundwater,applying GM(1,1) to forecasting the dynamic variation of groundwater.The writer hopes to provide some references about using groundwater resource of the area in the future for readers.展开更多
The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, e...The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, exploit and utilize on groundwater resource are provided rationally. According to the real condition of Sanjiang Plain, the indexes system is established based on the traditional DRASTIC model. The new system includes the following seven indexes: Depth of Water, Net Recharge, Aquifer Media, Soil Media, Conductivity of the Aquifer, Land Utilizing Ratio and Populace Density. The related analysis appears that the system is rather reasonable. Because traditional methods, such as analytic hierarchy process and fuzzy mathematics theory, can't be avoided human interference in selection of weights, they could lead to an imprecise result. In order to evaluate the groundwater vulnerability reasonably, entropy weight coefficient method is applied for the first time, which provides a new way to groundwater vulnerability evaluation. The method is a model whose weights are insured by the calculation process, so the artificial disturb can be avoided. It has been used to evaluate the groundwater vulnerability in Sanjiang Plain. The satisfied result is acquired. Comparably, the same result is acquired by the other method named projection pursuit evaluation based on real-coded accelerating genetic algorithm. It shows that entropy weight coefficient method is applicable on groundwater vulnerability evaluation. The evaluation result can provide reference on the decision-making departments.展开更多
PCG2 (Preconditioned Conjugate-Gradient Method 2), the most popular mothod used in groundwater field, was used to solve the distributed model of large-scale groundwater system. Its principle and effect was analyzed ...PCG2 (Preconditioned Conjugate-Gradient Method 2), the most popular mothod used in groundwater field, was used to solve the distributed model of large-scale groundwater system. Its principle and effect was analyzed mathematically, and verified by some specific examples. Numerical results acquired by PCG2 are accurate, it demonstrates that PCG2 is effective on methodology itself and man-ralated operation. So PCG2 is worthy of popularizing in the area of groundwater system for numerical analysis.展开更多
Groundwater is an important water resource in Haihe River basin,North China.The number of aquifers that appear to be declining under conditions of groundwater overdraft is increasing.To effectively manage the water re...Groundwater is an important water resource in Haihe River basin,North China.The number of aquifers that appear to be declining under conditions of groundwater overdraft is increasing.To effectively manage the water resources,there is a strong scientific need to analyze the net use of this important water resource and to quantify the water rights allocation for improved understanding of the future water展开更多
文摘文章以幂函数变换为研究对象,从背景值误差和还原误差的角度分析了幂函数变换对GM(1,1)模型建模精度的影响,论证了幂函数变换的GM(1,1)模型(PFNGM(1,1)模型)具有逼近无偏性,能在可忽略的误差范围内实现对白指数序列的预测无偏性。实例应用结果表明,其建模精度和预测效果均优于无偏GM(1,1)模型和离散GM(1,1)模型。为将适宜建模序列拓展至近似非齐次指数序列和季节波动序列,同时保留幂函数变换可以有效降低背景值误差对建模精度影响的优势,将幂函数变换与平移变换相结合构建了PFNGM(1,1)模型,将幂函数变换与季节性GM(1,1)模型(SGM(1,1)模型)相结合构建了PFSGM(1,1)模型。实例应用结果表明,PFNGM(1,1)模型的建模精度和预测效果均优于背景值改进的NGM(1,1, k )模型和ONGM(1,1, k,c )模型,PFSGM(1,1)模型的建模精度和预测效果均优于SGM(1,1)模型,验证了两种模型的有效性。
基金supported by the National Natural Science Foundation of China(70971103)the Specialized Research Fund for the Doctora Program of Higher Education(20120143110001)
文摘Firstly, the research progress of grey model GM (1,1) is summarized, which is divided into three development stages: assimilation, alienation and melting stages. Then, the matrix analysis theory is used to study the modeling mechanism of GM (1,1), which decomposes the modeling data matrix into raw data transformation matrix, accumulated generating operation matrix and background value selection matrix. The changes of these three matrices are the essential reasons affecting the modeling and the accuracy of GM (1,1). Finally, the paper proposes a generalization grey model GGM (1,1), which is a extended form of GM (1,1) and also a unified form of model GM (1,1), model GM (1,1,α), stage grey model, hopping grey model, generalized accumulated model, strengthening operator model, weakening operator model and unequal interval model. And the theory and practical significance of the extended model is analyzed.
基金China Postdoctoral Science Fund.The Youth Fund of Si Chuon University ( 4 3 2 0 2 8)
文摘The area of well rice in the sanjiang Plain is incresing recently.At the same time,the groundwater resource has been wasted.Thus,the resource of groundwater is shortening.More and more area appears the phenomenon of “hanger pump” and “funnel”.According to these problems the paper adopts Chuang Ye farm as the research base,through handle the data of groundwater,applying GM(1,1) to forecasting the dynamic variation of groundwater.The writer hopes to provide some references about using groundwater resource of the area in the future for readers.
基金Supported by the National Natural Science Foundation of China(30400275)the Tackle Key Problems of Heilongjiang Province(the Hobbledehoy Science Fund of Heilongjiang Province)(QC04C28)
文摘The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, exploit and utilize on groundwater resource are provided rationally. According to the real condition of Sanjiang Plain, the indexes system is established based on the traditional DRASTIC model. The new system includes the following seven indexes: Depth of Water, Net Recharge, Aquifer Media, Soil Media, Conductivity of the Aquifer, Land Utilizing Ratio and Populace Density. The related analysis appears that the system is rather reasonable. Because traditional methods, such as analytic hierarchy process and fuzzy mathematics theory, can't be avoided human interference in selection of weights, they could lead to an imprecise result. In order to evaluate the groundwater vulnerability reasonably, entropy weight coefficient method is applied for the first time, which provides a new way to groundwater vulnerability evaluation. The method is a model whose weights are insured by the calculation process, so the artificial disturb can be avoided. It has been used to evaluate the groundwater vulnerability in Sanjiang Plain. The satisfied result is acquired. Comparably, the same result is acquired by the other method named projection pursuit evaluation based on real-coded accelerating genetic algorithm. It shows that entropy weight coefficient method is applicable on groundwater vulnerability evaluation. The evaluation result can provide reference on the decision-making departments.
基金Supported by National Natural Science Foundation (30370825)
文摘PCG2 (Preconditioned Conjugate-Gradient Method 2), the most popular mothod used in groundwater field, was used to solve the distributed model of large-scale groundwater system. Its principle and effect was analyzed mathematically, and verified by some specific examples. Numerical results acquired by PCG2 are accurate, it demonstrates that PCG2 is effective on methodology itself and man-ralated operation. So PCG2 is worthy of popularizing in the area of groundwater system for numerical analysis.
文摘Groundwater is an important water resource in Haihe River basin,North China.The number of aquifers that appear to be declining under conditions of groundwater overdraft is increasing.To effectively manage the water resources,there is a strong scientific need to analyze the net use of this important water resource and to quantify the water rights allocation for improved understanding of the future water